Welcome to Journal of Tea Science,Today is

Journal of Tea Science ›› 2020, Vol. 40 ›› Issue (3): 319-327.doi: 10.13305/j.cnki.jts.2020.03.003

Previous Articles     Next Articles

Analysis of Arbuscular Mycorrhizal Fungal Community Structure in the Rhizosphere of Different Tea Cultivars

HE Fei, LI Donghua, BU Fan   

  1. School of Agriculture & Biotechnology, Ankang University, Ankang 725000, China
  • Received:2019-10-27 Revised:2019-12-24 Online:2020-06-15 Published:2020-06-09

Abstract: In order to enrich the arbuscular mycorrhizal (AM) fungal germplasm resources of tea plants (Camellia sinensis) in China, the community structure of AM fungi in the rhizosphere soil of different tea cultivars grown in Hanshuiyun tea garden of Ankang City, Shaanxi Province were analyzed. The results show that species richness, species and genera composition of AM fungi in the rhizosphere soil varied with tea cultivars. A total of six AM fungal species were isolated from the rhizosphere soil of Ziyang population. Likewise, five from Shancha 1, four from Longjing Changye, four from Longjing 43, and three species from Fuding Dabai. Soil collected from the rhizosphere of Longjing Changye had the highest spore density (3.57 spores per gram of dry soil), while the lowest spore density (1.10 spores per gram of dry soil) was found in the rhizosphere of Longjing 43. The highest Shannon-Wiener and Pielou evenness indices were found in the rhizosphere of Ziyang population (0.63 and 0.096), whereas the lowest values were observed in the rhizosphere of Longjing Changye (0.18 and 0.027). The maximum mycorrhizal colonization (29.5%) was found in the rhizosphere of Longjing Changye, whereas the minimum value (15.8%) was observed in the rhizosphere of Fuding Dabai. The Sorenson’s similarity coefficient of AM fungal species composition among five tested tea cultivars ranged from 0.111 to 0.750, with the highest between Longjing Changye and Longjing 43, and the lowest between Fuding Dabai and Ziyang population. The results reveal obvious differences in AM fungal community composition among the five tea cultivars. The identified AM fungal resources in rhizosphere soil are of great significance for further screening, researching AM fungi agent, and promoting the development of tea industrialization.

Key words: AM fungi, Camellia sinensis, cultivar, community structure

CLC Number: