Welcome to Journal of Tea Science,Today is
Basic Information about the Journal
Journal title: Journal of Tea science
Inscription of journal title: ZHU De
Responsible Institution: China Association for Science and Technology
Sponsored by: China Tea Science Society
Tea Research Institute, Chinese Academy of Agricultural Science
Editing and Publishing: Editorial Office, Journal of Tea science
Start time: 1964
No. of issues: Bi-monthly
Two-Dimensional Code of Tea Science Website
Cooperation

Top Read Articles

    Published in last 1 year |  In last 2 years |  In last 3 years |  All
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Research Progress of Tea Quality Evaluation Technology
    LIU Qi, OUYANG Jian, LIU Changwei, CHEN Hongyu, LI Juan, XIONG Ligui, LIU Zhonghua, HUANG Jian'an
    Journal of Tea Science    2022, 42 (3): 316-330.   DOI: 10.13305/j.cnki.jts.20220416.001
    Abstract918)      PDF(pc) (812KB)(958)       Save
    The quality of tea is the embodiment of the shape and inner quality of tea, and evaluating the quality of tea quickly and accurately is essential for tea trade and processing. Sensory evaluation, composition analysis and detection, and emerging technologies are the main tea quality evaluation techniques at present. This article summarized the research progress of three major evaluation technologies in recent years, and focused on the development trend of emerging technologies. Sensory evaluation is greatly influenced by subjective factors, but combined with quantitative description and analysis can reduce the influence of subjectivity. Component analysis detection has high threshold, difficult operation, time-consuming and labor-consuming, and the results obtained are relatively accurate. Emerging technologies are simple, fast, and non-destructive, but at present they cannot achieve satisfactory accuracy. In the tea product diversification today, only multi-dimensional comprehensive utilization of multiple methods can quickly and efficiently detect the quality of tea, and provide assistance for the healthy and efficient development of the tea industry.
    Reference | Related Articles | Metrics
    Research Advances of Fluoride Accumulation Mechanisms in Tea Plants (Camellia sinensis)
    XING Anqi, WU Zichen, XU Xiaohan, SUN Yi, WANG Genmei, WANG Yuhua
    Journal of Tea Science    2022, 42 (3): 301-315.   DOI: 10.13305/j.cnki.jts.20220416.003
    Abstract889)      PDF(pc) (876KB)(479)       Save
    Camellia sinensis (L.) O. Kuntze is a hyper fluoride (F) accumulation plant, whose F content in tea leaves is much higher than other plants, without any toxic symptoms. However, F is not an essential element for tea plant growth, and under high F stress, F affects the normal growth of plants by destroying the cell structure and inhibiting enzyme activities. In order to provide a theoretical basis for the future study of F accumulation in tea plants, the research progresses in the absorption, enrichment and accumulation/detoxification mechanisms of F in tea plants were reviewed.
    Reference | Related Articles | Metrics
    Camellia Ptilophylla and Specific Chemical Components, Theirs Health Beneficial Effects
    WU Wenliang, TONG Tong, HU Yao, ZHOU Hao, YIN Xia, ZHANG Shuguang
    Journal of Tea Science    2021, 41 (5): 593-607.   DOI: 10.13305/j.cnki.jts.20210917.002
    Abstract852)      PDF(pc) (1145KB)(383)       Save
    Cocoa tea (Camellia ptilophylla Chang) is a specific tea resource in China, and theobromine (TB) and gallocatechin gallate (GCG), as the dominant chemical components of cocoa tea, have various health effects. This paper summarized intervention effects and mechanisms of cocoa tea, TB and GCG on cardiovascular diseases, cancers, obesity, diabetes, neurodegenerative diseases, dental diseases, respiratory diseases and kidney diseases, etc. This review would provide a theoretical reference for the development of functional cocoa tea products.
    Reference | Related Articles | Metrics
    Research Advance of Tea Plant Genome and Sequencing Technologies
    WANG Pengjie, YANG Jiangfan, ZHANG Xingtan, YE Naixing
    Journal of Tea Science    2021, 41 (6): 743-752.  
    Abstract768)      PDF(pc) (564KB)(512)       Save
    The tea plant has the characteristics of high heterozygosity, large genome and high duplication, which has led to the slow progress of the preliminary research on the tea plant genomes. The rapid development of genome sequencing technologies has strongly promoted the deciphering and improvement of the tea plant genomes. This article reviewed the development of genome sequencing technologies, and classified the assembly and research progress of tea plant genomes in recent years according to the draft level, chromosome level and haplotype level. By discussing the future application and development direction of tea plant genomes, it provided a reference for the functional genomics research and precision molecular breeding in tea plants.
    Reference | Related Articles | Metrics
    Analysis on the Competitiveness and Complementarity of Tea Trade between China and RCEP Members
    LI Zheng, LIU Ding, HUO Zenghui, CHEN Fuqiao
    Journal of Tea Science    2022, 42 (5): 740-752.   DOI: 10.13305/j.cnki.jts.2022.05.010
    Abstract767)      PDF(pc) (532KB)(276)       Save
    The signing of RCEP had facilitated intra-regional trade liberalization. It is of great practical significance to investigate the impact of RCEP on China's tea import and export trade. Based on the tea trade data of China and other RCEP members from 2011 to 2020, combining the analysis of the current situation of intra-regional import and export trade, this study calculated several indicators such as revealed comparative advantage index (RCA), export similarity index (ESI), trade complementarity index (TCI), trade intensity index (TI) and intra-industry trade index (GL) to measure the competitiveness and complementarity of bilateral tea trade. The results indicate that the tea export competitions between China, Vietnam and Indonesia were more prominent. China's tea export had long-term comparative advantages, and the comparative advantages of green tea export were obvious, while the comparative advantages of China's export of large packaged black tea lag behind Indonesia and Vietnam. China's tea export was highly similar to Japan, Thailand, Singapore and South Korea, and had strong competitiveness in export structure. In addition, the tea trade between China and New Zealand, Brunei, Australia was highly complementary. China's tea trade with Indonesia, New Zealand and Vietnam was mainly intra-industry trade in some years, while with Australia and Myanmar was mainly inter-industry trade. Finally, under the framework of RCEP agreement, strategies including expanding potential markets, dealing with technical barriers to trade and optimizing export structure were proposed.
    Reference | Related Articles | Metrics
    The Effect of Red Light Withering on the Volatile Components of Tea Leaves and the Quality of Black Tea Product
    LIN Jiazheng, TU Zheng, CHEN Lin, YE Yang, LIU Fei, WANG Yuwan, YANG Yunfei, WU Xun, LYU Haowei
    Journal of Tea Science    2021, 41 (3): 393-405.   DOI: 10.13305/j.cnki.jts.2021.03.006
    Abstract766)      PDF(pc) (1658KB)(437)       Save
    Red light withering contributes to the formation of tea aroma. However, the effect of different red light quality on the volatile components of withered tea and the quality of the black tea product after processing remains to be studied. In this study, headspace solid phase micro extraction-gas chromatography-mass spectrometry was used to detect and analyze the volatile components of withered leaves under different light treatments such as dark, red light (630 nm, 1 000 lx, 3 000 lx), natural light (260-325 lx), and the dynamic changes of the volatile components of withered leaves and red light withered differential volatile substances under different light treatments were studied. The results show that a total of 130 volatile components were detected in withered leaves at different time periods, including 26 alcohols, 33 esters, 29 hydrocarbons, 12 aldehydes, 13 ketones, and 17 others. Comparing different light withering methods, it was found that the total content of volatile components in the red light 3 000 lx group pre-mid withering period (The first 8 h) were significantly higher than that in other groups. With the increase of red light intensity, the total content of esters increased significantly (P<0.05), while the total content of ketones decreased significantly (P<0.05). Through orthogonal partial least squares discriminant analysis, the variable projection importance factor was greater than 1 and the coefficient of variation was greater than 50%, 5 volatile components were screened out with the greater response to red light, including 1,2-dimethylpropyl-2-methyl-butanoic acid ester, 1-isocyano-3-methyl-benzene, decanal, 2-methyl-2-decanol, linoleic acid ethyl ester. Among them, the coefficient of variation of decanal was as high as 133.34% under red light 1 000 lx. The results of this study could provide a scientific basis for the improvement of black tea aroma quality and targeted regulation.
    Reference | Related Articles | Metrics
    Research Progress on the Volatile Compounds of Premium Roasted Green Tea
    SHI Yali, ZHU Yin, MA Wanjun, YANG Gaozhong, WANG Mengqi, SHI Jiang, PENG Qunhua, LIN Zhi, LYU Haipeng
    Journal of Tea Science    2021, 41 (3): 285-301.   DOI: 10.13305/j.cnki.jts.2021.03.001
    Abstract764)      PDF(pc) (622KB)(406)       Save
    Aroma is one of the key indicators to evaluate tea quality, and aroma quality is formed by the complex interactions between different volatile compounds. Premium roasted green teas generally have characteristics of excellent flavor quality, and are the most typical and representative Chinese green tea. In recent years, studies on their volatile compounds had increased gradually and made good progress. However, there were very few systematic explanations on the composition characteristics in aroma compounds of diverse high-quality roasted green teas. Therefore, the present study summarized the research progression in volatile compounds of premium roasted green teas in recent twenty years, enumerated the aroma compounds, illuminated the common compounds, and further discussed the key aroma compounds. These results will provide scientific evidence for the flavor evaluation and aroma quality control for the premium roasted green tea.
    Reference | Related Articles | Metrics
    Thinking on the Taxonomy of Camellia sect. Thea
    YANG Shixiong
    Journal of Tea Science    2021, 41 (4): 439-453.   DOI: 10.13305/j.cnki.jts.2021.04.001
    Abstract763)      PDF(pc) (863KB)(346)       Save
    Camellia sect. Thea, a group of high economic value, is extremely complicated in taxonomy because of the diversity and the continuity of interspecies morphological characters. There exist lots of controversies of current classification systems about sectional taxonomic circumscription and species definition. Here the taxonomic history of Sect. Thea was systematically reviewed. Some taxonomists’ views on the causes of the taxonomic confusion and how to improve the taxonomy were also presented.
    Reference | Related Articles | Metrics
    Analysis of the Metabolism of Amino Acids during the Withering of White Tea
    CHEN Jiajia, ZHU Chensong, ZHU Wenwei, SHANG Hu, LIN Lin, LUO Yuqin, SUN Weijiang
    Journal of Tea Science    2021, 41 (4): 471-481.   DOI: 10.13305/j.cnki.jts.2021.04.003
    Abstract725)      PDF(pc) (1554KB)(254)       Save
    In order to investigate amino acids during the withering of white tea, metabolomics and proteomics were used to detect amino acids and related enzymes in the withered leaves at 0 h, 12 h and 30 h. The results show that the total amino acids had no significant change during withering process. While serine, leucine, phenylalanine, lysine, tyrosine, histidine, isoleucine, proline, valine, phenylalanine and γ-aminobutyric acid contents increased but N-acetyl-L-glutamic acid, reduced glutathione, N-α-acetyl-L-arginine decreased in the early stage of withering (0-12 h). The contents of glutamic acid and acetylglycine decreased in the later stage. Proteins tended to degrade during the withering process and the enzymes enriched in amino acid synthesis pathway were down-regulated in the early stage of withering, and the enzymes related to degradation were up-regulated in the later stage. The protein amino acids were mainly derived from protein hydrolysis, and then converted into non-protein amino acids. The γ-aminobutyric acid was regulated by glutamate decarboxylase under dehydration conditions. The increase of its content promoted the umami taste of white tea.
    Reference | Related Articles | Metrics
    Analysis on the Achievements of Tea Science and Technology Awards at Provincial and Ministerial Level and above in China from 2008 to 2019
    XIONG Xingping, ZHANG Xinzhong, LI Hongbin, SUN Liang, YAO Mingzhe
    Journal of Tea Science    2021, 41 (5): 608-618.   DOI: 10.13305/j.cnki.jts.20210917.001
    Abstract665)      PDF(pc) (1013KB)(302)       Save
    Based on the national, provincial and ministerial science and technology awards in the field of tea science in China from 2008 to 2019, statistical analyses on the award, grade, year of award, the first completed person, the first completed unit, the main research fields, and the cooperation between industry, university and research unit were performed. The current status, characteristics and support trends of tea science and technology awards in China were clarified, aiming to provide ideas for Chinese tea science and technology personnel to cultivate achievement, determine scientific research topics and apply for awards.
    Reference | Related Articles | Metrics
    Research Progress of Tea Beer
    CHEN Dequan, ZHU Yan, ZOU Chun, YIN Junfeng, CHEN Jianxin, XU Yongquan
    Journal of Tea Science    2022, 42 (2): 169-178.   DOI: 10.13305/j.cnki.jts.2022.02.005
    Abstract638)      PDF(pc) (708KB)(369)       Save
    Tea beer is a new type of beer, obtained by adding tea or tea extract in the brewing process with the dual flavor characteristics of tea and beer. The development of tea beer would not only enrich the types, flavors, and physiological effects of beer, but also improve the utilization rate and additional value of tea resources and benefit for the common development of tea and beer industries. However, the studies of tea beer on pretreatment of raw materials, fermentation and clarification technologies were still not mature. Therefore, this paper systemically summarized the processing technologies of tea beer, including the pretreatment of raw materials, fermentation and clarification technologies. Based on that, we made the prospects for the future of tea beer, aiming to provide a reference for the research and development of tea beer in depth.
    Reference | Related Articles | Metrics
    Analysis of Metabolite Changes in the Natural Withering Process of Fu′an White Tea Based on Non-targeted Metabolomics Approach
    YUE Wenjie, JIN Xinyi, CHEN Mingjie, YE Naixing, GUO Li, ZHAO Feng
    Journal of Tea Science    2021, 41 (3): 379-392.   DOI: 10.13305/j.cnki.jts.20210304.001
    Abstract629)      PDF(pc) (4245KB)(236)       Save
    In this study, Camellia sinensis cv Fu'an Dabai was used as materials to make white tea following the standard indoor natural withering procedure. Samples were collected every 3 h, and non-targeted metabolomics was used to analyze tea metabolite changes. Principal component analysis (PCA) shows that metabolite contents in fresh leaves showed regular dynamic changes during the process of indoor natural withering of white tea. Totally 109 metabolites with significant difference were identified and showed 5 major patterns. These patterns could be divided into four stages: 24 h before withering, 24-48 h during withering, 48-57 h during withering and after 57 h. According to their structure, these metabolites can be classified into 4 types. The 8 monomer catechins (Catechins) showed a downward trend during the withering process. The contents of 18 proanthocyanidins (PAs) and 5 Theasinensins (TSs) showed different trends. The galloyl containing PAs and TSs showed an upward trend, while non- galloyl containing PAs and TSs showed an opposite trend. For glycoside derivatives, 6 kaempferol glycosides, 4 Quercetin (quercetin) glycoside and 1 apigenin glycoside showed an upward trend. Their contents increased significantly after 48 h withering. In the process of withering, 5 of the 12 phenolic acids showed an upward trend. While the rest 7 showed a downward trend. All of them reached their peaks or bottom at 57-60 h. In addition, 22 different metabolites including alkaloids, amino acids, peptides, coumarins, sugars, etc. were also identified. Caffeine showed an upward trend. Their contents reached the peaks at 60 h. Theobromine decreased significantly in the mid-withering period, and slightly recovered in the latter period. The contents of 2 theanine isomer and 4 coumarins rose to the peak at 12 h. After that, there was an overall downward trend during the withering process. These data offered important insights for understanding the biosynthesis and regulation mechanism of white tea during indoor natural withering process.
    Reference | Related Articles | Metrics
    Identification and Transcriptional Regulation of CLH Gene Family and Expression Analysis in Albino Tea Plants (Camellia sinensis)
    WANG Tao, WANG Yiqing, QI Siyu, ZHOU Zhe, CHEN Zhidan, SUN Weijiang
    Journal of Tea Science    2022, 42 (3): 331-346.   DOI: 10.13305/j.cnki.jts.2022.03.003
    Abstract625)      PDF(pc) (1540KB)(256)       Save
    Chlorophyllase (CLH) is the key enzyme in the degradation of chlorophyll, stripping its phytol to form dephytolithochlorophyll a. The full-length cDNA sequences of three CsCLHs genes were obtained from the second leaves of albino tea cultivar ‘Baijiguan', and bioinformatics analysis was performed. The results show that the three CsCLH genes could be divided into two subfamilies. The full length of CsCLHs was 894-975 bp, encoding 297-324 amino acids. The protein molecular weights were 31.99-34.91 kDa. The isoelectric points were 4.89-7.61, and the instability coefficients were 38.94-48.24. CsCLH1.1 and CsCLH1.2 were unstable proteins, while CsCLH2 was a stable protein. The subcellular localization prediction results of Cell Ploc show that three CsCLH proteins were located in chloroplast, while the results of Wolf Psort show that CsCLH1.1 and CsCLH1.2 were located in cytoplasm and CsCLH2 was located in chloroplast. The qRT-PCR results on the ‘Baijiguan' leaves indicated that expressions of CsCLHs were inhibited by shading treatment and light induced CsCLHs' expressions. Expression pattern analysis of CsCLHs shows that CsCLH1s were highly expressed in the albino cultivars. In addition, it was identified that CsCDF5 could bind to the CsCLH1.1 and CsCLH2 promoters according to the yeast one hybrid system. In conclusion, CsCLHs in albino tea leaves might be involved in chlorophyll degradation and play an important role in the process of albino leaf, which provided a reference for further investigation in the function of the CLH gene family and the albinism of leaves in tea plants.
    Reference | Related Articles | Metrics
    Detection of Bitterness-related Substances in Youxi Bitter Tea and Correlation Analysis with Bitterness
    WEI Shasha, PENG Jing, CHEN Zhidan, SUN Weijiang, LIN Lin
    Journal of Tea Science    2021, 41 (3): 337-349.   DOI: 10.13305/j.cnki.jts.2021.03.003
    Abstract611)      PDF(pc) (1692KB)(208)       Save
    The main taste substances of 37 individuals from four regions of natural distribution of Youxi bitter tea were detected and their bitterness were also evaluated. The main evaluation group members were evaluated and screened according to the ranking method test and quantitative description ability test in food sensory analysis, and 7 panelists with high accuracy and good repeatability were obtained finally. The results of taste substances detection show that the biochemical components and bitter taste of Youxi bitter tea were diverse. The individuals of Chimu village were more bitter than the other three regions, and the contents of gallic acid, EGCG, ECG and theobromine were higher. The bitterness intensity of individuals in Guangming Village was the lowest with high content of non-gallated catechins such as EGC and EC and caffeine. The contents of lysine, cysteine and total amino acids of individuals in Qiushan village were higher. The contents of umami amino acids (aspartic acid and serine) and bitter amino acids (histidine and methionine) in non-protected areas of Chimu village were higher. The correlation analysis between bitterness intensity and the contents of taste substances shows that the contents of theobromine and valine were positively correlated with bitterness intensity, and the content of aspartic acid with sweet taste was significantly and negatively correlated with bitterness intensity.
    Reference | Related Articles | Metrics
    Nomenclature, Typification, and Natural Distribution of Camellia sinensis var. assamica (Theaceae)
    ZHAO Dongwei
    Journal of Tea Science    2022, 42 (4): 491-499.   DOI: 10.13305/j.cnki.jts.2022.04.007
    Abstract596)      PDF(pc) (547KB)(279)       Save
    Camellia sinensis var. assamica (Theaceae) is a globally cultivated plant for beverages. The efforts to clarify its nomenclature and type are reviewed here. Griffith proposed Camellia sect. Thea (L.) Griff. as a name at new rank rather than a new taxon in 1854 based on Art. 41.4 of the Shenzhen Code. Camellia sealyana T.L. Ming is excluded from sect. Thea because of its abaxially punctate leaves and free styles. Masters did not validly publish Thea assamica in 1844, but this Latin name was validated in 1847 by Hooker. Steenis first proposed the new combination, Camellia sinensis (L.) Kuntze var. assamica (Hook.) Steenis, in 1949, and this is the accurate scientific name for Assam tea. The specimen, W. Griffith s.n. (K000939670) at herbarium K, was designated as the neotype of T. assamica in 2021. Seven known heterotypic synonyms of C. sinensis var. assamica and their protologues and types were summarized here. Although Darlington and Ammal proposed the new combination, C. assamica, in 1945, Assam tea is, however, widely accepted as a variety of C. sinensis based on morphological, geological, and phylogenetic analyses. If the specific rank was applied, the earlier heterotypic name of Assam tea, C. theifera published in 1838, would gain priority over C. assamica. Then the widely used epithet “assamica” might be conserved under Art. 14 of the Shenzhen Code. The natural distribution of Assam tea was summarized based on the comprehensive examination of specimens collected from China, India, Laos, Myanmar, Thailand, and Vietnam. The status of natural populations of Assam tea in each country was discussed with the different applications of utilization and conservation.
    Reference | Related Articles | Metrics
    Cloning and Expression Analysis of CsWRKY17 Transcription Factor in Tea Plants
    LIU Miaomiao, ZANG Liansheng, SUN Xiaoling, ZHOU Zhongshi, YE Meng
    Journal of Tea Science    2021, 41 (5): 631-642.   DOI: 10.13305/j.cnki.jts.2021.05.001
    Abstract593)      PDF(pc) (1820KB)(232)       Save
    WRKY transcription factors, a super family of plant transcription factors, play an essential role in the regulation of plant defense responses to herbivores. While the roles of herbivore-related WRKY transcription factors are well established in grass plants, their roles in woody plants are still largely unknown. Here, we cloned a WRKY transcription factor, named CsWRKY17. CsWRKY17 has a full length of 1 141 bp, contains a 987 bp open reading frame, and encodes 328 amino acids. Based on the conserved domain analysis, CsWRKY17 belongs to the WRKY Ⅱ subfamily, containing one conserved WRKY domain and a typical C2H2-type zinc finger motif. Homology alignment and phylogenetic tree analysis show that CsWRKY17 has the closest relationship with AtWKRY11 and AtWRKY17 in Arabidopsis thaliana. Moreover, CsWRKY17 exhibited a tissue specific expression, and was also induced by mechanical wounding, tea geometrid (Ectropis oblique) attack, simulated herbivory, and exogenous phytohormone treatments like JA. Transient expression experiments indicate that it might play a role in the nucleus. Taken together, we proposed that CsWRKY17 is a potential regulator of herbivore-induced defense responses against herbivores in tea plants through JA, ABA, GA and BR signaling. Our study paved the way for molecular analysis of herbivore-related WRKY genes in tea plants, and provided a good genetic resource and theoretical basis for future studies of pest-resistant genes and breeding of tea plants.
    Reference | Related Articles | Metrics
    Sensory Characteristics of Yellow Large Leaf Tea by Quantitative Descriptive Analysis and Construction of Flavor Wheel
    DAI Qianying, YE Yingjun, AN Qi, ZHENG Fangling, XIAO Mingji, XIAO Mengxuan, WANG Huiqiang, ZHANG Haiwei
    Journal of Tea Science    2021, 41 (4): 535-544.   DOI: 10.13305/j.cnki.jts.2021.04.007
    Abstract590)      PDF(pc) (1993KB)(275)       Save
    Based on GB/T 16861—1997 and quantitative descriptive analysis, the sensory flavor characteristics of yellow large leaf tea were studied. Generating by panelists freely, the initial 110 attributes were collected. After deleting of the synonymous, vague and adverb qualifiers attributes, combining with M-value and correlation analysis method, 27 attributes were ultimately obtained. The flavor wheel of yellow large leaf tea was drawn with the first-level terms of smell and taste, the second-level terms of aroma, flavor, basic taste and mouthfeel, and 27 attributes as the third-level terms, quantitative reference samples were set for 18 typical flavor attributes, and finally the sensory description vocabulary of yellow large leaf tea with different strength reference materials was established, thus realizing the qualitative and quantitative sensory evaluation of yellow large leaf tea.
    Reference | Related Articles | Metrics
    Clinical Trial on the Effect of Drinking Jinhua Xiangyuan Tea for 3 Months on the Improvement of Glucose and Lipid Metabolism in A Small Sample Hyperlipidemia Population
    SUN Ying, CHEN Xin, YANG Hua, YING Jian, SHAO Danqing, LÜ Xiaohua, XIAO Jie, CHEN Zhixiong, LI Song, QIN Junjie, ZHENG Bin, GAO Jianshe
    Journal of Tea Science    2022, 42 (4): 561-576.   DOI: 10.13305/j.cnki.jts.2022.04.010
    Abstract582)      PDF(pc) (1135KB)(270)       Save
    This study is aimed at investigating the clinical effect of drinking Jinhua Xiangyuan tea for 3 months on the glucose and lipid metabolism in a small sample patients with hyperlipidemia (with/without non-alcoholic fatty liver). Jinhua Xiangyuan tea was produced by the new process using Eurotium cristatum. In this study, before-and-after control design was used. The body composition (body weight, BMI, waist hip ratio, percentage of body fat, visceral fat grade), blood biochemical indicators (fasting blood glucose, uric acid, blood lipid), fatty liver, and gut microbiota were examined before and after the test. After drinking Jinhua Xiangyuan tea for 3 months, the body weight, BMI, percentage of body fat, visceral fat grade, serum total cholesterol, low-density lipoprotein cholesterol, and fasting blood glucose of 38 volunteers were significantly reduced (P<0.05). Fatty liver was less severe. Gut microbiota’s diversity and richness were increased. The relative abundance of Phascolarctobacterium, Ruminococcus, Haemophilus and Veillonella were increased, and Dialister and Butyricimonas were decreased. Jinhua Xiangyuan tea could increase the relative abundance of short-chain fatty acid-producing bacteria, increasing short-chain fatty acids, and improving insulin resistance, then improving glucose and lipid metabolism. The results of this study still need to be further confirmed by more rigorous long-term experimental observation.
    Reference | Related Articles | Metrics
    Comparison on Chemical Components of Yunnan and Fuding White Tea Based on Metabolomics Approach
    GAO Jianjian, CHEN Dan, PENG Jiakun, WU Wenliang, CAI Liangsui, CAI Yawei, TIAN Jun, WAN Yunlong, SUN Weijiang, HUANG Yan, WANG Zhe, LIN Zhi, DAI Weidong
    Journal of Tea Science    2022, 42 (5): 623-637.   DOI: 10.13305/j.cnki.jts.20220601.001
    Abstract577)      PDF(pc) (1197KB)(349)       Save
    In order to investigate the differences in chemical compositions between Yunnan white tea and Fuding white tea, 9 Yunnan white tea samples and 6 Fuding white tea samples were studied by ultrahigh performance liquid chromatography-quadrupole orbitrap mass spectrometer (UHPLC-Q-Exactive/MS) combined with sensory evaluation to analyze the non-volatile chemical components of white tea in two places. A total of 109 compounds were structurally identified in this study, including catechins, dimeric catechins, flavonoid glycosides (flavone/flavonol-O-glycosides and flavone/flavonol-C-glycosides), N-ethyl-2-pyrrolidinone-substituted flavan-3-ols (EPSFs), amino acids, phenolic acids, organic acids, alkaloids, lipids, et al. The partial least squares discriminant analysis and heatmap analysis show that there were distinct differences in the chemical components between Yunnan white tea and Fuding white tea. A total of 46 compounds showed significant differences between groups (P<0.05). The contents of epicatechins, dimericcatechins, flavonoid glycosides (kaempferol-3-galactoside, quercetin-3-glucoside, etc.), phenolic acids, organic acids, and lipids were relatively high in Yunnan white tea; while the contents of nonepicatechins, flavonoid glycosides (quercetin-3-galactoside, myricetin-3-galactoside, etc.), amino acids and alkaloids were relatively higher in Fuding white tea, which was speculated to be related with tea cultivars and drying processes. This study provided a theoretical basis for the understanding and recognition of the difference in the chemical substance and flavor quality of different white tea between two places, as well as the identification of white tea origins.
    Reference | Related Articles | Metrics
    Did the “Belt and Road” Initiative Promote the Export of China's tea? ——An Empirical Study Based on the Generalized DID
    WANG Chunxiao, GAO Feng, CHEN Fuqiao, ZENG Liang
    Journal of Tea Science    2021, 41 (6): 865-875.  
    Abstract576)      PDF(pc) (538KB)(293)       Save
    The “Belt and Road” Initiative is a great opportunity for China's tea export. But the existing literatures are short of the evaluation of the policy effect. Based on the panel data of China and 40 major tea importing countries and regions, the difference-in-difference model (Generalized DID) was used to evaluate the promote effect of the “Belt and Road” Initiative to China's tea export. The results show that under the control of other variables, the “Belt and Road” Initiative had a positive effect to promote the growth of the export value of China's tea. Products heterogeneity analysis shows that the “Belt and Road” Initiative significantly promoted the export growth of green tea, but it had no significant effect on black tea. In addition, among the control variables, the improvement of per capital GDP and economic openness could significantly promote the export growth of China's tea. Finally, some suggestions were put forward for China's tea export trade to seize the opportunity.
    Reference | Related Articles | Metrics