[1] Gupta S, Bharalee R, Bhorali P, et al. Identification of drought tolerant progenies in tea by gene expression analysis[J]. Functional & Integrative Genomics, 2012, 12(3): 543-563.
[2] Sharma P, Kumar S.Differential display-mediated identification of three drought-responsive expressed sequence tags in tea [Camellia sinensis (L.) O. Kuntze][J]. Journal of Biosciences, 2005, 30(2): 231-235.
[3] Farooq M, Hussain M, Wahid A, et al. Drought Stress in Plants: An Overview[M]//Plant Responses to Drought Stress. Springer Berlin Heidelberg, 2012: 1-33.
[4] 马蕊. 云南普洱茶大幅减产干旱导致云南茶价上涨[J]. 中国茶叶, 2010, 32(4): 20.
[5] 伍崇岳. 干旱致湖南夏茶减产三成[J]. 茶博览, 2011(6): 29.
[6] Cheruiyot E K, Mumera L M, Ngetich W K, et al. High fertilizer rates increase susceptibility of tea to water stress[J]. Journal of Plant Nutrition, 2009, 33(1): 115-129.
[7] Upadhyaya H, Dutta B K, Sahoo L, et al. Comparative effect of Ca, K, Mn and B on post-drought stress recovery in tea [Camellia sinensis (L.) O Kuntze][J]. American Journal of Plant Sciences, 2012, 3(4): 443-460.
[8] 魏鹏. 茶树抗旱性部分生理生化指标的研究[D]. 重庆: 西南农业大学, 2003.
[9] 刘玉英, 徐泽, 罗云米. 干旱胁迫对不同茶树品种生理特性的影响[J]. 西南农业学报, 2010, 23(2): 387-389.
[10] 杨华, 唐茜, 黄毅, 等. 名山白毫对干旱胁迫的生理生态响应[J]. 西南农业学报, 2010, 23(5): 1497-1503.
[11] Cheruiyot E K, Mumera L M, Ngetich W K, et al. Polyphenols as potential indicators for drought tolerance in tea (Camellia sinensis L.)[J]. Bioscience, Biotechnology, and Biochemistry, 2007, 71(9): 2190-2197.
[12] Kato M, Kitao N, Ishida M, et al. Expression for caffeine biosynthesis and related enzymes in Camellia sinensis[J]. Zeitschrift Fur Naturforschung C, 2010, 65(3): 245-256.
[13] 柯玉琴, 庄重光, 何华勤, 等. 不同灌溉处理对铁观音茶树光合作用的影响[J]. 应用生态学报, 2008, 19(10): 2132-2136.
[14] 曹潘荣, 刘春燕, 刘克斌, 等. 水分胁迫诱导岭头单枞茶香气的形成研究[J]. 华南农业大学学报, 2006, 27(1): 17-20.
[15] Chen X H, Zhuang C G, He Y F, et al. Photosynthesis, yield, and chemical composition of Tieguanyin tea plants [Camellia sinensis (L.) O. Kuntze] in response to irrigation treatments[J]. Agricultural Water Management, 2010, 97(3): 419-425.
[16] Chaves M M, Maroco J P, Pereira J S.Understanding plant responses to drought—from genes to the whole plant[J]. Functional Plant Biology, 2003, 30(3): 239-264.
[17] Xu ZZ, Zhou GS, Shimizu H.Plant responses to drought and rewatering[J]. Plant Signaling & Behavior, 2010, 5(6): 649-654.
[18] Kantar M, Lucas S J, Budak H.Drought stress: molecular genetics and genomics approaches[J]. Advances in Botanical Research, 2011(57): 445-493.
[19] Upadhyaya H, Panda S K.Responses of Camellia sinensis to drought and rehydration[J]. Biologia Plantarum, 2004, 48(4): 597-600.
[20] Upadhyaya H, Panda S K, Dutta B K.Variation of physiological and antioxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery[J]. Acta Physiologiae Plantarum, 2008, 30(4): 457-468.
[21] 覃秀菊, 李凤英, 何建栋, 等. 广西茶树新品种品系叶片解剖结构特征与特性关系的研究[J]. 中国农学通报, 2009, 25(10): 36-39.
[22] Netto L A, Jayaram K M, Puthur J T.Clonal variation of tea [Camellia sinensis (L.) O. Kuntze] in countering water deficiency[J]. Physiology and Molecular Biology of Plants, 2010, 16(4): 359-367.
[23] 王家顺, 李志友. 干旱胁迫对茶树根系形态特征的影响[J]. 河南农业科学, 2011, 40(9): 55-57.
[24] 杨华. 名山白毫茶树品种对干旱胁迫的生理生态响应[D]. 雅安: 四川农业大学, 2007.
[25] 郝树荣, 郭相平, 王为木, 等. 水稻分蘖期水分胁迫及复水对根系生长的影响[J]. 干旱地区农业研究, 2007, 25(1): 149-152.
[26] 刘锦春, 钟章成. 水分胁迫和复水对石灰岩地区柏木幼苗根系生长的影响[J]. 生态学报, 2009, 29(12): 6439-6445.
[27] Sanders G J, Arndt S K.Osmotic Adjustment Under Drought Conditions[M]//Plant Responses to Drought Stress. Springer Berlin Heidelberg, 2012: 199-229.
[28] 张木清, 陈如凯. 作物抗旱分子生理与遗传改良[M]. 北京: 科学出版社, 2005: 369.
[29] 潘瑞炽. 植物生理学[M]. 北京: 高等教育出版社, 2004: 297.
[30] 刘玉英. 茶树抗旱生理生化机制的研究[D]. 重庆: 西南大学, 2006.
[31] Impa S M, Nadaradjan S, Jagadish S V K. Abiotic Stress Responses in Plants[M]//Drought stress induced reactive oxygen species and anti-oxidants in plants, 2012: 131-147.
[32] Peleg Z, Blumwald E.Hormone balance and abiotic stress tolerance in crop plants[J]. Current Opinion in Plant Biology, 2011, 14(3): 290-295.
[33] 潘根生, 吴伯千, 沈生荣, 等. 水分胁迫过程中茶树新梢内源激素水平的消长及其与耐旱性的关系[J]. 中国农业科学, 1996, 29(5): 9-15.
[34] 刘长海, 周莎莎, 邹养军, 等. 干旱胁迫条件下不同抗旱性苹果砧木内源激素含量的变化[J]. 干旱地区农业研究, 2012, 30(5): 94-98.
[35] Dobra J, Motyka V, Dobrev P, et al. Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content[J]. Journal of Plant Physiology, 2010, 167(16): 1360-1370.
[36] 闫映宇, 赵成义, 盛钰, 等. 膜下滴灌对棉花根系、地上部分生物量及产量的影响[J]. 应用生态学报, 2009, 20(4): 970-976.
[37] Reddy A R, Chaitanya K V, Vivekanandan M.Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants[J]. Journal of Plant Physiology, 2004, 161(11): 1189-1202.
[38] 郭春芳, 孙云, 张木清. 不同土壤水分对茶树光合作用与水分利用效率的影响[J]. 福建林学院学报, 2008, 28(4): 333-337.
[39] 郭春芳, 孙云, 唐玉海, 等. 水分胁迫对茶树叶片叶绿素荧光特性的影响[J]. 中国生态农业学报, 2009, 17(3): 560-564.
[40] 郭春芳, 孙云, 张木清. 土壤水分胁迫对茶树光合作用——光响应特性的影响[J]. 中国生态农业学报, 2008, 16(6): 1413-1418.
[41] 刘玉英, 易红华, 徐泽. 干旱胁迫对不同茶树品种叶绿素含量的影响[J]. 南方农业, 2007, 1(1): 68-70.
[42] Huang G T, Ma S L, Bai L P, et al. Signal transduction during cold, salt, and drought stresses in plants[J]. Molecular Biology Reports, 2012, 39(2): 969-987.
[43] Chaves M M, Flexas J, Pinheiro C.Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell[J]. Annals of Botany, 2009, 103(4): 446-473.
[44] Grigorova B, Vaseva I, Demirevska K, et al. Combined drought and heat stress in wheat: changes in some heat shock proteins[J]. Biologia Plantarum, 2011, 55(1): 105-111.
[45] Bahrndorff S, Tunnacliffe A, Wise M J, et al. Bioinformatics and protein expression analyses implicate LEA proteins in the drought response of Collembola[J]. Journal of Insect Physiology, 2009, 55(3): 210-217.
[46] Lindemose S, Oshea C, Jensen M K, et al. Structure, function and networks of transcription factors involved in abiotic stress responses[J]. International Journal of Molecular Sciences, 2013, 14(3): 5842-5878.
[47] 唐益苗, 赵昌平, 高世庆, 等. 植物抗旱相关基因研究进展[J]. 麦类作物学报, 2009, 29(1): 166-173.
[48] 林凡云, 胡银岗, 宋国琦, 等. 糜子干旱后复水过程中基因表达谱的初步分析[J]. 西北农林科技大学学报: 自然科学版, 2007, 35(3): 81-85.
[49] 阳文龙. 牛耳草光合作用的脱水保护和复苏机理[D]. 北京: 中国科学院植物研究所, 2002.
[50] 刘玉冰. 荒漠复苏植物红砂抗旱机理的生理生态学特性研究[D]. 兰州: 兰州大学, 2006.
[51] Kim J M, To T K, Ishida J, et al. Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2012, 53(5): 847-856.
[52] Dobra J, Vankova R, Havlova M, et al. Tobacco leaves and roots differ in the expression of proline metabolism-related genes in the course of drought stress and subsequent recovery[J]. Journal of Plant Physiology, 2011, 168(13): 1588-1597.
[53] 孙云南, 陈林波, 夏丽飞, 等. 干旱胁迫下茶树基因表达的AFLP分析[J]. 植物生理学报, 2012, 48(3): 241-246.
[54] Gupta S, Bharalee R, Bhorali P, et al. Molecular analysis of drought tolerance in tea by cDNA-AFLP based transcript profiling[J]. Molecular Biotechnology, 2013, 53(3): 237-248.
[55] Krishnaraj T, Gajjeraman P, Palanisamy S, et al. Identification of differentially expressed genes in dormant (banjhi) bud of tea [Camellia sinensis (L.) O. Kuntze] using subtractive hybridization approach[J]. Plant Physiology and Biochemistry, 2011, 49(6): 565-571.
[56] Das A, Das S, Mondal T K.Identification of differentially expressed gene profiles in young roots of tea [Camellia sinensis (L.) O. Kuntze] subjected to drought stress using suppression subtractive hybridization[J]. Plant Molecular Biology Reporter, 2012, 30(5): 1088-1101.
[57] 陈盛相, 齐桂年, 夏建冰, 等. 茶树在干旱条件下的 mRNA 差异表达[J]. 茶叶科学, 2012, 32(1): 53-58.
[58] Muoki R C, Paul A, Kumar S.A shared response of thaumatin like protein, chitinase, and late embryogenesis abundant protein3 to environmental stresses in tea [Camellia sinensis (L.) O. Kuntze][J]. Functional & Integrative Genomics, 2012, 12(3): 565-571.
[59] Li X W, Feng Z G, Yang H M, et al. A novel cold-regulated gene from Camellia sinensis, CsCOR1, enhances salt-and dehydration-tolerance in tobacco[J]. Biochemical and Biophysical Research Communications, 2010, 394(2): 354-359.
[60] Paul A, Muoki R C, Singh K, et al. CsNAM-like protein encodes a nuclear localized protein and responds to varied cues in tea [Camellia sinensis (L.) O. Kuntze][J]. Gene, 2012, 502(1): 69-74.
[61] Rana N K, Mohanpuria P, Yadav S K.Expression of tea cytosolic glutamine synthetase is tissue specific and induced by cadmium and salt stress[J]. Biologia Plantarum, 2008, 52(2): 361-364.
[62] 庄重光. 不同水分处理下铁观音茶树的生理机制及其差异蛋白质组学研究[D]. 福州: 福建农林大学, 2008.
[63] Jeyaramraja P R, Kumar R R, Pius P K, et al. Photoassimilatory and photorespiratory behaviour of certain drought tolerant and susceptible tea clones[J]. Photosynthetica, 2003, 41(4): 579-582.
[64] Mohanpuria P, Yadav S K.Characterization of novel small RNAs from tea (Camellia sinensis L.)[J]. Molecular Biology Reports, 2012, 39(4): 3977-3986.
[65] 杨维时, 江昌俊, 韦胡领, 等. 多抗香茶树品种简介[J]. 中国茶叶, 2009(10): 15.
[66] 郭春芳, 孙云, 陈常颂, 等. 茶树品种光合与水分利用特性比较及聚类分析[J]. 作物学报, 2008, 34(10): 1797-1804.
[67] 陈周一琪, 王志岚. 肯尼亚茶产业与茶树资源育种研究[J]. 中国农学通报, 2012, 28(19): 97-103.
[68] Bhattacharya A, Saini U, Joshi R, et al. Osmotin-expressing transgenic tea plants have improved stress tolerance and are of higher quality[J]. Transgenic Research, 2013, 22(129): 1-13.
[69] Miransari M.Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress[J]. Plant Biology, 2010, 12(4): 563-569.
[70] 郑芳. 茶树接种VA菌根生理生化特性的研究[D]. 武汉:华中农业大学, 2010.
[71] 彭晚霞, 宋同清, 肖润林, 等. 覆盖与间作对亚热带丘陵茶园土壤水分供应的调控效果[J]. 水土保持学报, 2005, 19(6): 97-101.
[72] Kigalu J M.Effects of planting density and drought on the productivity of tea clones (Camellia sinensis L.): Yield responses[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(15): 1098-1106.
[73] 单武雄, 罗文, 肖润林, 等. 连续5年施菜籽饼肥和稻草覆盖对茶园土壤生态系统的影响[J]. 中国生态农业学报, 2010, 18(3): 472-476.
[74] Upadhyaya H, Dutta B K, Panda S K.Zinc modulates drought induced biochemical damages in tea [Camellia sinensis (L) O Kuntze][J]. Journal of Agricultural and Food Chemistry, 2013, 61(27): 6660-6670.
[75] 吕文, 杨桂山, 万荣荣, 等. 太湖流域西部丘陵茶园修剪前后蒸散速率的比较分析[J]. 中国生态农业学报, 2013, 21(2): 184-191.
[76] 汪汇海, 沙丽清, 杨效东. 稻秸覆盖对有机茶园土壤生态环境影响的研究[J]. 中国生态农业学报, 2006, 14(4): 65-67.
[77] 张蕊, 白岗栓. 保水剂在农业生产中的应用及发展前景[J]. 农学学报, 2012, 2(7): 37-42.
[78] 赵霞, 黄瑞冬, 李潮海, 等. 农艺措施和保水剂对土壤蒸发和夏玉米水分利用效率的影响[J]. 干旱地区农业研究, 2013, 31(1): 101-106.
[79] 李倩, 刘景辉, 张磊, 等. 适当保水剂施用和覆盖促进旱作马铃薯生长发育和产量提高[J]. 农业工程学报, 2013, 29(7): 83-90.
[80] 李荣喜, 胡红莲, 黄永芳, 等. 6 种保水剂对油茶生长和光合特性的影响[J]. 经济林研究, 2012, 30(4): 47-51.
[81] 王志伟, 梁亚春, 刘文平, 等. 叶面喷施FA旱地龙对冬小麦产量和发育期的影响[J]. 干旱地区农业研究, 2009, 27(1): 68-72.
[82] 张国斌, 郁继华, 冯致, 等. NO和ABA对自毒作用下辣椒幼苗光合作用的影响[J]. 中国农业科学, 2013, 46(10): 2076-2084.
[83] Cao M, Liu X, Zhang Y, et al. An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants[J]. Cell Research, 2013, 23(8): 1043-1054.
[84] Upadhyaya H, Panda S K, Dutta B K.CaCl2 improves post-drought recovery potential in [Camellia sinensis (L) O. Kuntze][J]. Plant Cell Reports, 2011, 30(4): 495-503.