欢迎访问《茶叶科学》,今天是

茶园芽孢杆菌QM7促生特性及耐酸铝机制初步研究

  • 罗毅 ,
  • 苏有健 ,
  • 张永利 ,
  • 夏先江 ,
  • 宋莉 ,
  • 王烨军 ,
  • 廖万有
展开
  • 安徽省农业科学院茶叶研究所,安徽 黄山 245000
罗毅,男,助理研究员,博士,主要从事茶园土壤微生物研究。

收稿日期: 2016-04-07

  网络出版日期: 2019-08-26

基金资助

国家茶叶产业技术体系土壤肥料岗位项目(CARS-23-07B)、安徽省农业科学院科技创新基金项目(16A0823)、安徽省现代农业茶产业技术体系茶树栽培岗位项目(2016N1820)

Research on The Promoting Effects on Tea Growth and Aluminum Tolerant Mechanism of Bacillus subtilis Strain QM7

  • LUO Yi ,
  • SU Youjian ,
  • ZHANG Yongli ,
  • XIA Xianjiang ,
  • SONG Li ,
  • WANG Yejun ,
  • LIAO Wangyou
Expand
  • Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan 245000, China

Received date: 2016-04-07

  Online published: 2019-08-26

摘要

目前含芽孢杆菌等微生物制剂的有机肥料在酸性茶园土壤中的生物活性不高,难以起到有效的促生作用,达到部分替代和减少化肥使用量的目的。本实验分离得到1株耐酸铝芽孢杆菌,命名为QM7。试验发现菌株促生能力受到铝离子浓度的影响,在无铝条件下菌株生长素(IAA)的分泌量为85.6βmg·L-1,当铝离子浓度为1 mmol·L-1时IAA分泌量为36.8 mg·L-1;盆栽结果表明,在6周内菌株可以增加茶苗根系表面积56.8%,根尖数27.3%;蛋白电泳分析发现高浓度的铝胁迫会导致菌株胞内64种与转录、翻译和代谢相关蛋白的表达发生差异,使得菌株生长受到抑制。

本文引用格式

罗毅 , 苏有健 , 张永利 , 夏先江 , 宋莉 , 王烨军 , 廖万有 . 茶园芽孢杆菌QM7促生特性及耐酸铝机制初步研究[J]. 茶叶科学, 2016 , 36(6) : 567 -574 . DOI: 10.13305/j.cnki.jts.2016.06.003

Abstract

At present, the biological activities of Bacillus.spp and other microorganisms in the acid tea garden soil are not high, thereby difficult to effectively promote plant growth and replace or reduce the usage of chemical fertilizer. In this study, one of Aluminum (Al) tolerance strains, Bacillus subtilis QM7 was isolated from tea garden soil. The auxin (IAA) production of QM7 was influenced by Al concentration (from 85.6 mg·L-1 to 36.8 mg·L-1 under 0 to 1 mmol·L-1 external Al respectively). Results of pot experiment showed that strain QM7 could promote plant growth by increasing root surface area by 56.8% and numbers of root tips by 27.3% in 6 weeks. Two-dimensional gel electrophoresis (2-DE) was used to identify proteins involved in Al toxicity-induced changes. Results showed that more than 64 proteins differentially expressed in response to Al stress, including proteins involved in DNA transcription, protein translation and cell envelope, which reduced the growth of Bacillus subtilis.

参考文献

[1] Guo JH, Liu XJ, Zhang Y, et al.Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010.
[2] Singh S, Pandey A, Kumar B, et al.Enhancement in growth and quality parameters of tea (Camellia sinensis (L.) O. Kuntze) through inoculation with arbuscular mycorrhizal fungi in an acid soil[J]. Biology and Fertility of Soils, 2010, 46(5): 427-433.
[3] 王世强, 胡长玉, 程东华, 等. 调节茶园土壤pH对其土著微生物区系及生理群的影响[J]. 土壤, 2011, 43(1): 76-80.
[4] 于天一, 孙秀山, 石程仁, 等. 土壤酸化危害及防治技术研究进展[J]. 生态学杂志, 2014, 33(11): 3137-3143.
[5] Panhwar QA, Naher UA, Radziah O, et al.Eliminating aluminum toxicity in an acid sulfate soil for rice cultivation using plant growth promoting bacteria[J]. Molecules, 2015, 20(3): 3628-3646.
[6] Huang X, Chen L, Ran W, et al.Trichoderma harzianum strain SQR-T37 and its bio-organic fertilizer could control Rhizoctonia solani damping-off disease in cucumber seedlings mainly by the mycoparasitism[J]. Applied Microbiology Biotechnology, 2011, 91(3): 741-755.
[7] Lugtenberg B, Kamilova F.Plant-growth-promoting rhizobacteria[J]. Annual Review of Microbiology, 2009, 63: 541-556.
[8] Singh S, Sood A, Sharma S, et al.Studies on rhizospheric mycoflora of tea (Camellia sinensis). vitro antagonism with dominant bacteria[J]. Chinese Journal of Applied & Environmental Biology, 2007, 13: 357-360.
[9] Zhao J, Wu X, Nie C, et al.Analysis of unculturable bacterial communities in tea orchard soils based on nested PCR-DGGE[J]. World Journal Microbiology Biotechnology, 2012, 28(5): 1967-1979.
[10] Tahara K, Norisada M, Hogetsu T, et al.Aluminum tolerance and aluminum-induced deposition of callose and lignin in the root tips of Melaleuca and Eucalyptus species[J]. Journal of Forest Research, 2005, 10(4): 325-333.
[11] Wang C, Zhao X Q, Aizawa T, et al.High aluminum tolerance of Rhodotorula sp. RS1 is associated with thickening of the cell wall rather than chelation of aluminum ions[J]. Pedosphere, 2013, 23(1): 29-38.
[12] Wang C, Wang CY, Zhao XQ, et al.Proteomic analysis of a high aluminum tolerant yeast Rhodotorula taiwanensis RS1 in response to aluminum stress[J]. Biochimica et Biophysica Acta, 2013, 1834(10): 1969-1975.
[13] 王阁奇, 年洪娟, 赵丽伟, 等. 酸性土壤中耐铝细菌的筛选鉴定及其耐铝能力分析[J]. 中国微生态学杂志, 2012, 24(3): 219-222.
[14] Glickmann E, Dessaux Y.A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria[J]. Applied & Environmental Microbiology, 1995, 61(2): 793-796.
[15] Zhao J, Wu X, Nie C, et al.Analysis of unculturable bacterial communities in tea orchard soils based on nested PCR-DGGE[J]. World Journal Microbiology Biotechnology, 2012, 28(5): 1967-1979.
[16] Zheng XF, Su YK, Liu B, et al.Microbial community diversity in tea root zone soils at different elevations[J]. Chinese Journal of Eco-Agriculture, 2010, 18(4): 866-871.
[17] Whelan AM, Alexander M.Effects of low pH and high Al, Mn and Fe levels on the survival ofRhizobium trifolii and the nodulation of subterranean clover[J]. Plant & Soil, 1986, 92(3): 363-371.
[18] 易有金, 肖浪涛, 王若仲, 等. 内生枯草芽孢杆菌B-001对烟草幼苗的促生作用及其生长动态[J]. 植物保护学报, 2007, 34(6): 619-623.
[19] Zhao Q, Dong C, Yang X, et al.Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer[J]. Appiedl Soil Ecology, 2011, 47(1): 67-75.
[20] Hecker M, Reder A, Fuchs S, et al.Physiological proteomics and stress/starvation responses in Bacillus subtilis and Staphylococcus aureus[J]. Research in Microbiology, 2009, 160(4): 245-258.
[21] Ter Beek A, Wijman JG, Zakrzewska A, et al.Comparative physiological and transcriptional analysis of weak organic acid stress in Bacillus subtilis[J]. Food Microbiology, 2015, 45(Pt A): 71-82.
[22] Tojo S, Satomura T, Matsuoka H, et al.Catabolite repression of the Bacillus subtilis FadR regulon, which is involved in fatty acid catabolism[J]. Journal of Bacteriology, 2011, 193(10): 2388-2395.
[23] Petrackova D, Semberova L, Halada P, et al.Stress proteins in the cytoplasmic membrane fraction of Bacillus subtilis[J]. Folia Microbiologica, 2010, 55(5): 427-434.
[24] Joseph L, Ryan M, Christopher A, et al. Pseudomonas fluorescens orchestrates a fine metabolic-balancing act to counter aluminium toxicity[J]. Environmental Microbiology, 2010, 12(6): 1384-1390.
[25] Exley C, Birchall JD.The cellular toxicity of aluminium[J]. Journal of Theoretical Biology, 1992, 159(1): 83-98.
[26] Wang C, Wang CY, Zhao XQ, et al.Proteomic analysis of a high aluminum tolerant yeast Rhodotorula taiwanensis RS1 in response to aluminum stress[J]. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics, 2013, 1834(10): 1969-1975.
文章导航

/