Welcome to Journal of Tea Science,Today is

Cloning and Expression Analysis of Na+/H+ Antiporter Gene CsNHX1 and CsNHX2 in Tea Plant (Camellia sinensis)

  • CHEN Jiangfei ,
  • YU Jinming ,
  • YANG Jiankun ,
  • YU Youben ,
  • XIAO Bin ,
  • YANG Yajun ,
  • WANG Weidong
Expand
  • 1. College of Horticulture, Northwest A&F University, Yangling 712100, China;
    2. Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China

Received date: 2018-03-16

  Revised date: 2018-07-25

  Online published: 2019-12-15

Abstract

The Na+/H+ antiporter (NHX) plays an important role in plant growth, development and stress response. In this study, the full-length cDNA sequences of CsNHX1 and CsNHX2 (GenBank: MG722977 and MG515211) were cloned from tea cultivar ‘Longjingchangye’. Bioinformatics analysis showed that the full-length cDNA of CsNHX1 and CsNHX2 were 1β691βbp and 1β757βbp, all containing a 1β626βbp open reading frame and encoding 541 amino acids. The molecular weights of CsNHX1 and CsNHX2 were 59.5βkD and 59.7βkD and pI were 7.07 and 8.79, respectively.The results of protein sequence analysis showed that CsNHX1 and CsNHX2 contained the conserved Na+/H+ exchange domain, and belong to the typical transmembrane proteins. Phylogenetic analysis of plant NHX revealed that CsNHX1 and CsNHX2 are the member of Class I that localized to the vacuolar membrane in IC subfamily. In addition, qRT-PCR results showed that the expressions of CsNHX1 and CsNHX2 were induced by drought, low-temperature and salt stress. In contrast, exogenous ABA could not induce the expressions of CsNHX1 and CsNHX2. In addition, the expression level of CsNHX1 in tea plant decreased significantly, but that of CsNHX2 increased gradually under heat stress, indicating that CsNHX1 and CsNHX2 were differently involved in tea plant responding to environmental stress, and possibly through different responding modes.

Cite this article

CHEN Jiangfei , YU Jinming , YANG Jiankun , YU Youben , XIAO Bin , YANG Yajun , WANG Weidong . Cloning and Expression Analysis of Na+/H+ Antiporter Gene CsNHX1 and CsNHX2 in Tea Plant (Camellia sinensis)[J]. Journal of Tea Science, 2018 , 38(6) : 559 -568 . DOI: 10.13305/j.cnki.jts.2018.06.002

References

[1] 王新超, 杨亚军. 茶树抗性育种研究现状[J]. 茶叶科学, 2003, 23(2): 94-98.
[2] Pardo J M, Cubero B, Leidi E O, et al.Alkali cation exchangers: roles in cellular homeostasis and stress tolerance[J]. Journal of Experimental Botany, 2006, 57(5): 1181-1199.
[3] Brett C L, Donowitz M, Rao R.Evolutionary origins of eukaryotic sodium/proton exchangers[J]. American Journal of Physiology Cell Physiology, 2005, 288(2): C223-C239.
[4] Apse M P, Sottosanto J B, Blumwald E.Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter[J]. Plant Journal for Cell & Molecular Biology, 2003, 36(2): 229-239.
[5] Bassil E, Tajima H, Liang Y C, et al.The Arabidopsis Na+/H+Antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction[J]. Plant Cell, 2011, 23(9): 3482-3497.
[6] Yamaguchi T, Fukadatanaka S, Inagaki Y, et al.Genes encoding the vacuolar Na+/H+ exchanger and flower coloration[J]. Plant & Cell Physiology, 2001, 42(5): 451-461.
[7] Rodríguezrosales M P, Francisco J G, Huertas R M, et al.Plant NHX cation/proton antiporters[J]. 2009, 4(4): 265-276.
[8] Zhang H, Liu Y X, Xu Y, et al.A newly isolated Na+/H+ antiporter gene, DmNHX1, confers salt tolerance when expressed transiently in Nicotiana benthamiana or stably in Arabidopsis thaliana[J]. Plant Cell Tissue & Organ Culture, 2012, 110(2): 189-200.
[9] Dacosta M.Research advances in mechanisms of turf grass tolerance to abiotic stresses: From Physiology to Molecular Biology[J]. Critical Reviews in Plant Sciences, 2014, 33(2/3): 141-189.
[10] Quintero F J, Blatt M R, Pardo J M.Functional conservation between yeast and plant endosomal Na+/H+ antiporters[J]. Febs Letters, 2000, 471(2): 224-228.
[11] Fukuda A, Nakamura A, Tagiri A, et al.Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice[J]. Plant & Cell Physiology, 2004, 45(2): 146-159.
[12] Yokoi S, Quintero F J, Cubero B, et al.Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response[J]. Plant Journal for Cell & Molecular Biology, 2010, 30(5): 529-539.
[13] Venema K, Belver A, Marin-Manzano M C, et al. A novel intracellular K+/H+ antiporter related to Na+/H+ antiporters is important for K+ ion homeostasis in plants[J]. Journal of Biological Chemistry, 2003, 278(25): 22453-22459.
[14] Porat R, Pavoncello D, Ben G.A heat treatment induced the expression of a Na+/H+ antiport gene (cNHX1) in citrus fruit[J]. Plant Science, 2002, 162(6): 957-963.
[15] Li W Y, FRANCISCA L I, Wong F L, et al.Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY)-2 cells[J]. Plant Cell & Environment, 2010, 29(6): 1122-1137.
[16] Wu C A, Yang G D, Meng Q W, et al.The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress[J]. Wiley, 2004, 45(5): 600-607.
[17] 卜华虎. 玉米Na+/H+质子泵ZmNHX1功能的初步研究[D]. 北京: 中央民族大学, 2011.
[18] 俞嘉宁. 小麦耐旱、耐盐相关基因的克隆、分析与功能研究[D]. 咸阳: 西北农林科技大学, 2003.
[19] 郭俊红, 王伟东, 谷星, 等. 茶树WRKY转录因子基因CsWRKY57的克隆及表达分析[J]. 茶叶科学, 2017, 37(4): 411-419.
[20] 王伟东. 高温和干旱胁迫下茶树转录组分析及Histone H1基因的功能鉴定[D]. 南京: 南京农业大学, 2016.
[21] Hao X Y, Horvath D P, Chao W S, et al.Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze)[J]. International Journal of Molecular Sciences, 2014, 15(12): 22155-22172.
[22] Kenneth J, Livak Thomas D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Method, 2001, 25(4): 402-408.
[23] 刘威, 李慧, 蔺经, 等. 杜梨PbNHX1基因的克隆、表达分析及功能验证[J]. 果树学报, 2018, 35(2): 137-146.
[24] Hamada A, Shono M, Xia T, et al.Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini[J]. Plant Molecular Biology. 2001, 46(1): 35-42.
[25] Gaxiola R A, Rao R. Sherman A.et al.The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast[J]. Proceedings of the national academy of sciences of the United States of America, 1999, 96(4): 1480-1485.
[26] Fukuda A, Yazaki Y, Ishikawa T, et al.Na+/H+ antiporter in tonoplast vesicles from rice roots[J]. Plant & Cell Physiology, 1998, 39(2): 196-201.
[27] 张雨良, 张智俊, 杨峰山, 等. 新疆盐生植物车前PmNHX1基因的克隆及生物信息学分析[J]. 中国生物工程杂志, 2009, 29(1): 27-33.
[28] Bulle M, Yarra R, Abbagani S.Enhanced salinity stress tolerance in transgenic chilli pepper (Capsicum annuum L.) plants overexpressing the wheat antiporter (TaNHX2) gene[J]. Molecular Breeding. 2016, 36(4): 36.
[29] Qiao W H, Zhao X Y, Li W, et al.Overexpression of AeNHX1, a root-specific vacuolar Na+/H+ antiporter from Agropyron elongatum, confers salt tolerance to Arabidopsis and Festuca plants[J]. Plant Cell Reports. 2007, 26(9): 1663-1672.
[30] Alhassan M, Daniso E, Boscaiu M, et al.Expression of the vacuolar Na+/H+ antiporter gene (NHX1) in three Plantago species differing in salt tolerance[J]. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Horticulture, 2015, 72(2): 441-442.
[31] Brini F, Hanin M, Mezghani I, et al.Overexpression of wheat Na+/H+ antiporter TaNHX1 and H+-pyrophosphatase TVP1 improve salt and drought stress tolerance in Arabidopsis thaliana plants[J]. Journal of Experimental Botany, 2007, 58(2): 301-307.
[32] Sun M H, Ma Q J, Liu X, et al.Molecular cloning and functional characterization of MdNHX1 reveals its involvement in salt tolerance in apple calli and Arabidopsis[J]. Scientia Horticulturae, 2017, 215(27): 126-133.
[33] Wang L, Ma Y K, Li N N, et al.Isolation and characterization of a tonoplast Na+/H+ antiporter from the halophyte Nitraria sibirica[J]. Biologia Plantarum, 2016, 60(1): 1-10.
[34] Munns R, Sharp R E.Involvement of abscisic acid in controlling plant growth in soil of low water potential[J]. Functional Plant Biology, 1993, 20(20): 425-437.
[35] Fukuda A, Nakamura A, Hara N, et al.Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes[J]. Planta, 2011, 233(1): 175-188.
[36] Liang M, Lin M, Lin Z, et al.Identification, functional characterization, and expression pattern of a NaCl inducible vacuolar Na+/H+ antiporter in chicory (Cichorium intybus L.)[J]. Plant Growth Regulation, 2015, 75(3): 605-614.
[37] Adler G, Blumwald E, Bar-Zvi D.The sugar beet gene encoding the sodium/proton exchanger 1 (BvNHX1) is regulated by a MYB transcription factor[J]. Planta, 2010, 232(1): 187-195.
[38] Afaq A M, Prasad S, Frans J M M. Improving crop salt tolerance: anion and cation transporters as genetic engineering targets[J]. Plant stress, 2009, 5(1): 64-70.
[39] Munns R, Tester M.Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681.
[40] 伍国强, 冯瑞军, 魏金魁, 等. 过量表达霸王ZxNHXZxVP1-1基因增强甜菜对渗透胁迫的耐受性[J]. 植物生理学报, 2017, 53(6): 1007-1014.
Outlines

/