Based on the field survey and laboratory analysis, the soil aggregate composition and stability characteristics in five soil types (yellow soil, red earth, moisture sandy soil, alpine meadow soil and purple soil) of tea garden in Wuyishan city were investigated. The results showed that the contents of soil macro-aggregates decreased with soil depth, but micro-aggregates increased correspondingly in the five soil types of tea garden. The contents of soil macro-aggregates (>5 mm) were highest, accounting for 18.07%-89.23% of the total in yellow soil, alpine meadow soil and purple soil, the soil micro-aggregates (<0.25 mm) were the highest, accounting for 37.16%-63.91% of the total in red soil and moisture sandy soil. The proportion of R0.25 (water-stable aggregate >0.25 mm ) was between 36.08% and 97.23% (sample means 73.60%). The mean weight diameter (MWD) and geometric mean diameter (GMD) of soil aggregates in alpine meadow soil of tea garden were significantly higher than those in other soil types, followed by those in yellow soil and purple soil, the lowest was in moisture sandy soil. The fractal dimension (D) changes in the opposite trend simultaneously. The soil aggregate composition and stability were significantly correlated with soil organic carbon, total N, total P, soil bulk density, soil porosity, sand and silt, but not significant correlated with C/N, total K, pH value and clay.
WANG Feng
,
CHEN Yuzhen
,
YOU Zhiming
,
WU Zhidan
,
JIANG Fuying
,
CHEN Zhizhi
,
WENG Boqi
. Composition and Stability of Soil Aggregates among Different Soil Types of Tea Garden[J]. Journal of Tea Science, 2014
, 34(2)
: 129
-136
.
DOI: 10.13305/j.cnki.jts.2014.02.004
[1] 刘恩科, 赵秉强, 梅旭荣, 等. 不同施肥处理对土壤水稳性团聚体及有机碳分布的影响[J]. 生态学报, 2010, 30(4): 1035-1041.
[2] Rutigliano F A, Ascoli R D, De Santo A V. Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover[J]. Soil Biology and Biochemistry, 2004, 36: 1719-1729.
[3] 赵京考, 刘作新, 韩永俊. 土壤团聚体的形成与分散及其在农业生产上的应用[J]. 水土保持学报, 2003, 17(6): 163-166.
[4] Amezketa E.Soil aggregate stability: A review[J]. Journal of Sustainable Agriculture, 1999, 14(2/3): 83-151.
[5] Six J, Elliott E T, Paustian K.Soil structure and soil organic matter II. A normalized stability index and the effect of mineralogy[J]. Soil Science Society of America Journal, 2000,64(3): 1042-1049.
[6] Van Bavel C H M. Mean weight-diameter of soil aggregates as a statistical index of aggregation[J]. Soil Science Society of America Journal, 1949, 14: 20-23.
[7] Gardner W R.Representation of soil aggregate-size distribution by a logarithmic-normal distribution[J]. Soil Science Society of America Proceedings, 1956, 20: 151-153.
[8] Zhang Z, Wei C, Xie D, et al. Effects of land use patterns on soil aggregate stability in Sichuan Basin, China[J]. Particuology, 2008, 6(3): 157-166.
[9] Martınez-Mena M, Deeks L K, Williams A G.An evaluation of a fragmentation fractal dimension technique to determine soil erodibility[J]. Geoderma, 1999, 90(1): 87-98.
[10] 农业部种植业管理司. 2012年全国茶园面积、产量、产值统计[J]. 茶叶科学, 2013, 33(3): 267.
[11] 刘敏英, 郑子成, 李廷轩. 茶园土壤团聚体中微生物量碳、氮的分布特征[J]. 中国农业科学, 2011, 44(15): 3162-3168.
[12] Yüksek T, Göl C, Yüksek F, et al. The effects of land-use changes on soil properties: The conversion of alder coppice to tea plantations in the Humid Northern Blacksea Region[J]. African Journal of Agricultural Research, 2009, 4(7): 665-674.
[13] 夏建强, 章明奎, 徐建民. 林地开垦后对不同质地红壤碳氮和磷库的影响[J]. 土壤通报, 2005, 36(2): 185-189.
[14] 福建省农业科学院茶叶研究所土肥室. 武夷岩茶及其土壤调查总结报告[J]. 茶叶科学简报, 1984(2): 1-5.
[15] 林心炯, 周钦泽, 何妙华. 茶园土壤肥力的调查与鉴定[J]. 茶叶科学简报, 1987(3): 6-11.
[16] Elliott E T, Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal, 1986, 50: 627-633.
[17] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
[18] 邱莉萍, 张兴昌, 张晋爱. 黄土高原长期培肥土壤团聚体中养分和酶的分布[J]. 生态学报, 2006, 26(2): 364-372.
[19] 杨培岭, 罗远培, 石元春. 用粒径的重量分布表征的土壤分形特征[J]. 科学通报, 1993, 38(20): 1896-1899.
[20] 龚伟, 胡庭兴, 王景燕, 等. 川南天然常绿阔叶林人工更新后土壤团粒结构的分形特征[J]. 植物生态学报, 2007, 31(1): 56-65.
[21] 吴承祯, 洪伟. 不同经营模式土壤团粒结构的分形特征研究[J]. 土壤学报, 1999, 36(2): 162-167.
[22] 何淑勤, 郑子成, 宫渊波. 不同退耕模式下土壤水稳性团聚体及其有机碳分布特征[J]. 水土保持学报, 2011, 25(5): 229-233.
[23] 刘敏英, 郑子成, 李廷轩. 不同植茶年限土壤团聚体的分布特征及稳定性研究[J]. 茶叶科学, 2012, 32(5): 402-410.
[24] 章明奎, 何振立. 利用方式对红壤水稳定性团聚体形成的影响[J]. 土壤学报, 1997, 34(4): 359-366.
[25] 周纯亮, 吴明. 中亚热带四种森林土壤团聚体及其有机碳分布特征[J]. 土壤, 2011, 43(3): 406-410.
[26] 刘艳, 查同刚, 王伊琨, 等. 北京地区栓皮栎和油松人工林土壤团聚体稳定性及有机碳特征[J]. 应用生态学报, 2013, 24(3): 607-613.
[27] 余立华, 刘桂华, 陈四进, 等. 栗茶间作模式下茶树根系的基础特性[J]. 经济林研究, 2006, 24(3): 6-10.
[28] 董莉丽. 不同土地利用类型下土壤水稳性团聚体的特征[J]. 林业科学, 2011, 47(4): 95-100.
[29] Zhou H, Lu YZ, Yang ZC, et al. Influence of Conservation Tillage on soil aggregates features in North China plain[J]. Agricultural Sciences in China, 2007, 6(9): 1099-1106.
[30] Li Z-X, Cai C-F, Shi Z-H, et al. Aggregate stability and its relationship with some chemical properties of red soils in subtropical China[J]. Pedosphere, 2005, 15(1): 129-136.
[31] 孙天聪, 李世清, 邵明安. 长期施肥对褐土有机碳和氮素在团聚体中分布的影响[J]. 中国农业科学, 2005, 38: 1841-1848.
[32] 吕文星, 张洪江, 王伟, 等. 重庆四面山不同林地土壤团聚体特征[J]. 水土保持学报, 2010, 24(4): 192-198.
[33] 刘晓利, 何园球, 李成亮, 等. 不同利用方式和肥力红壤中水稳性团聚体分布及物理性质特征[J]. 土壤学报, 2008, 45(3): 459-465.