设3 000、6 000、9 000 lx等3个光强梯度,研究了萎凋光照强度对萎凋叶含水率、容重、柔软性、弹性、塑性、色差等物理特性,以及呼吸特性的影响,并对后续加工叶的物理特性进行了测定。结果表明,随着萎凋进程中鲜叶含水率的逐渐下降,鲜叶容重、柔软性呈先升后降的趋势,在萎凋适度范围内(含水率60%~65%),以6 000 lx处理最高;弹性呈先下降后增加的趋势,不同处理间以6 000 lx处理的弹性相对较高,塑性变化规律与之相反;色差明亮度L值总体呈下降趋势,红绿度a值呈先下降后增加的趋势,以6 000 lx处理下a值最小,即保绿特性最好,感官审评结果也表明6 000 lx处理的干茶样汤色和外形得分最高,品质最优;CO2释放量总体呈先下降后增加再平稳的变化趋势,3个处理均在萎凋6 h时出现拐点,以6 000 lx处理的释放量最大。
Setting three different withering light intensities, the water content, bulk destiny, flexibility, elasticity, plasticity and color value, the released amount of CO2 of the withering leaves were evaluated, and the effects of different withering light intensity on physical characteristics of rolled leaves, fermented leaves and fired tea were also analysed. The results showed that with the increasing of withering time, moisture content of tea fresh leaves decreased gradually, bulk destiny and elasticity of leaves increased at first and then decreased during withering, and were the highest at 6 000 lx in moderate range (the moisture content was between 60% and 65%), elasticity decreased at first and then increased, the elasticity of tea leaves were relatively highest when the withering light intensity was 6 000 lx, and the variation of plasticity was opposite, the L value (luminosity) declined generally, the “a” value (red and green degree) decreased at first and then increased, and it had the lowest value at 6 000 lx, namely the green keeping was the best, the results of sensory evaluation also showed that the liquor color and shape of black tea at 6 000 lx had the highest score, with the best quality, the released amount of CO2 decreased at first, then increased and was stable finally, the urning point occurred during withering at 6 h, and the amount was the largest when the withering light intensity was 6 000 lx.
[1] Thomas Muthumani.Studies on freeze-withering in black tea manufacturing[J]. Food Chemistry, 2007, 101(1): 103-106.
[2] 张艳丽. 不同光源萎凋对乌龙茶生理生化及品质形成影响研究[D]. 福州: 福建农林大学, 2010: 3-4.
[3] Owuor P O, Tsushida, T, Horita H, et al. Effects of artificial withering on the chemical composition and quality of black tea[J]. Trop Sci, 1987, 27(3): 159-166.
[4] Ullah M R, Roy P C.Effect of withering on the polyphenol oxidase level in the leaf[J]. J Sci Food Agric, 1982, 33(5): 492-495.
[5] 曹望成, 龚琦. 茶叶物理特性与制茶工程技术[J]. 中国茶叶加工, 1996(1): 19-22.
[6] 郝志龙, 蔡银笔, 金心怡, 等. 不同造型工艺对闽南乌龙茶品质的影响[J]. 食品科学, 2012, 34(6): 105-109.
[7] 林燕萍, 金心怡, 郝志龙, 等. 茶叶物理特性及乌龙茶造型工艺的研究进展[J]. 福建茶叶, 2011(2): 9-13.
[8] 范仕胜, 晋秀, 杨清, 等. 人工光照萎凋对茶叶主要品质成分与酶活性的影响[J]. 湖北农业科学, 2012, 51(6): 1152-1155.
[9] 黄国资, 赖兆祥, 庞式. 乌龙茶人工光照晒青技术初探[J]. 中国茶叶加工, 2006(2): 19-20.
[10] 张灵枝, 王登良, 毛明辉. 不同光照强度晒青对单枞茶品质的影响[J]. 食品科学, 2005, 26(6): 185-188.
[11] ZDEMIR F, GOKALP H Y.Effect of rolling method on physical characteristics of rolled tea leaves[J]. Tea Science, 1992, 61(2): 51-68.
[12] PARK J H, LIM K C, CHO D B, et al. Effect of a final rolling process on Okro tea quality[J]. Journal of the Korean Society of Food Science and Nutrition, 2003, 32(1): 58-61.
[13] YUZO M, YUSUKE S, YUICHI Y.Extracellular and intracellular resistances and capacitance of cell membranes and cell wall of tea leaves during the rolling process[J]. Chagyo Kenkyu Hokoku, 2006, 101(1): 29-34.
[14] 罗龙新. 鲜叶物理特性与成条关系的初步探讨[J]. 中国茶叶, 1984, 6(4): 9-11.
[15] Sekine J, Haij, Kamel H E M, et al. A determination of bulk density of eight kinds of forage[J]. Journal of the Faculty of Agriculture Tottori University (Japan), 1998, 34(3): 5-9.
[16] 王秀萍, 陈常颂. 茶叶力、热特性研究及其在制茶工程中的应用[J]. 茶叶科学技术, 2001(4): 15-17.
[17] 张永华, 张海东, 赵玉清, 等. 云南晒青毛茶物理特性研究[J]. 湖南农业科学, 2013, 52(4): 43-44.
[18] 金心怡, 陈济斌, 吉克温. 茶叶加工工程[M]. 北京: 中国农业出版社, 2003: 6-15.
[19] 张哲, 牛智有. 揉捻过程中茶叶物理特性的变化规律[J]. 湖北农业科学, 2012, 51(13): 2767-2770.
[20] 黄伙水, 马艳凌, 贾献涛, 等. 闽南乌龙茶成型机理的试验初探[J]. 福建茶叶, 2009(4): 8-13.
[21] 焦海晏. 人工光源萎凋的应用[J]. 茶叶科学简报, 1986(2): 9-12.