亚热带低山区是我国茶园的主要分布区域,微量元素对茶叶的品质具有十分重要的影响,研究其空间变异特性是实现低山茶园精确管理的基础。利用地统计学、主成分分析方法对四川蒙顶山茶园土壤微量元素空间变异性、影响因素及多元素综合制图进行了研究。结果表明:(1)蒙顶山茶园土壤四种微量元素的空间变异具有相似性。四种元素均为指数模型,步长间距为120 m时变程为206~1 860 m,铁、锰和锌均具有中等程度的空间相关性[C0/(C0+C)值在25.1%~49.6%之间],锰和铜在NE111º方向上具有相似的各向异性特征,铁和锌则具有各向同性的趋势。(2)主成分综合制图较好地反映了微量元素分布的总体规律。两种主成分均具有较明确的物理意义,其插值图体现了微量元素特性沿坡面方向的带状变化特点,与半方差函数分析的结果完全吻合。(3)土壤条件对蒙顶山茶园土壤微量元素影响较大,而坡度是影响土壤微量元素空间分布形态的主要地形因素。
The subtropical hill region is the main area where the tea plantations are distributed in Chian, Trace elements are very important to tea quality, Study on the spatial variability of trace elements in tea plantation soils is the foundation of precision agriculture. With the original data as basis, the spatial variability of trace elements of montanic tea plantation soil in Mengshan is studied with the aid of principal component analysis and geostatistics model. The result showed: (1) The spatial variability of four trace elements(Fe, Mn, Zn, Cu) in tea plantation soils are similar. All of the theoretical model of trace elements are exponential model, the range of spatial correlation is 206~1 860 m. The spatial correlation of Fe, Mn, Zn belong to medium levels [C0/(C0+C): 25.1%~49.6%], the spatial variability between Mn and Cu similar anisotropic characteristic in NE111º, Fe and Zn trends to isotropy. (2) Principal component of comprehensive cartography describe the distribution rule of trace elements in general. Maps of Kriged estimates with principal component showed that the characters of trace elements distributed in a belt shape across the Mengshan mountain, which are in accordance with the result of geostatistic analysis. (3)The mainly influencing factors of tea plantation soil in Mengshan are soil condition and slope.
[1] 吴云, 杨剑虹, 魏朝富. 重庆茶园土壤酸化及肥力特征的研究[J]. 土壤通报, 2004, 35(6): 716~719.
[2] 韩文炎, 许允文. 低丘红壤茶园土壤养分限制因子及平衡施肥研究[J]. 浙江农业学报, 1995, 7(5): 387~391.
[3] 彭福元, 刘继尧, 张亚莲, 等. 湖南传统名优茶产地土壤特性的调查研究[J]. 茶叶通讯, 1999, (1): 3~7.
[4] 马立锋, 石元值, 阮建云. 苏、浙、皖茶区茶园土壤pH状况及近十年来的变化[J]. 土壤通报, 2000, 31(5): 205~208.
[5] 唐根年, 陆景冈, 王援高, 等. 浙江省及邻近地区名茶形成的土壤地质环境分析[J]. 茶叶科学, 2001, 21(2): 85~89.
[6] 师进霖, 陈玲洁, 宋云华, 等. 土壤肥力因子与茶叶品质的关系[J]. 中国农学通报, 2005, 21(4): 97~100.
[7] 马立锋, 韩文炎, 石元值, 等. 浙江省部分茶区茶园土壤中硼含量及影响因素研究[J]. 中国农业科学, 2003, 36(12): 1515~1518.
[8] 黄苹, 谭和平, 陈能武. 茶叶与土壤中铜含量的相关分析[J]. 西南农业学报, 2003, 16(1): 51~53.
[9] 谭和平, 王银华, 李中桂. 茶园土壤肥力诊断的采样方法探讨[J]. 贵州茶叶, 1991, (1): 7~10.
[10] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999.
[11] 王政权. 地统计学及在生态学中的应用[M]. 北京: 科学出版社, 1999.
[12] 王学军, 李本纲, 陶櫉. 土壤微量金属含量的空间分析[M]. 北京: 科学出版社, 2005.
[13] 刘静, 孙海伟, 刘杰, 等. 山东茶园土壤与茶叶矿质元素的分析[J]. 植物资源与环境学报, 2003, 12(3): 40~43.
[14] 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2001.
[15] 冯娜娜, 李廷轩, 张锡洲, 等. 不同尺度下山区茶园土壤有机质含量的空间变异[J]. 生态学报, 2006, 26(3): 349~356.
[16] 郑袁明, 陈煌, 陈同斌, 等. 北京市土壤中Cr, Ni含量的空间结构与分布特征[J]. 第四纪研究, 2003, 23(4): 436~445.
[17] Cambardella C A, Moorman T B, Novak J M.Field—scale variability of soil properties in Central lowa soils[J]. Soil Sci Soc, 1994, 58: 1501~1511.
[18] 常硕其, 彭克勤, 周浩. 锰对茶树生长发育及茶叶品质关系的研究进展[J]. 福建茶叶, 2006(4): 8~10.
[19] 谢忠雷, 郭平, 刘鹏, 等. 茶园土壤锰的形态分布及其影响因素[J]. 农业环境科学学报, 2007, 26(2): 645~650.
[20] 张锡洲, 李廷轩, 张仁绥, 等. 蒙山土壤的宜茶性调查研究[J]. 西南农业学报, 2000, 13(4): 122~126.