以物化特性为指标,利用生产型球磨机将碾茶进行超微粉碎,得到中值粒径为117.094、60.176、40.041、30.646、25.282、21.090、19.199、14.209 µm的抹茶,探究不同粒径下抹茶的物化特性。结果表明,随着粉碎时间的延长,粉体粒径逐渐减小,细胞破碎程度显著增加,但茶粉主要成分的官能团结构并未见改变;当粒度细化到一定程度后,比表面积和表面能增大,颗粒处于能量不稳定状态,易发生粘附及团聚现象;粉体的容重减小,这与粉体的孔隙率增大有关;由于茶样比表面积增大,粉体内部物质暴露,使得水分有所减少,总含水量降低;茶粉亮度逐渐升高,绿度增加;随着粉碎时间的延长,样品的茶多酚、游离氨基酸等物质含量呈现先增加后降低的趋势,抗坏血酸和EGCG等物质含量呈现减少的趋势。以上结果表明,超微粉碎过程对抹茶的物化特性总体影响显著。
Taking the physicochemical characteristics as indicators, the tea was superfine grinding by a production type ball mill to obtain Matcha with medium particle size of 117.094, 60.176, 40.041, 30.646, 25.282, 21.090, 19.199 and 14.209 µm, and to explore the physicochemical characteristics of Matcha at different particle sizes. The results show that with the pulverization time prolonged, the particle size of the powder gradually decreased and the degree of cell breakage increased remarkably. However, the functional group structure of the main component of the tea powder did not change. When the particle size was refined to a certain extent, the specific surface area and surface energy increased, the particles were in an unstable energy state, and prone to adhesion and agglomeration. The bulk density of the powder reduced, which was related to the increase of the porosity of the powder. Due to the increased specific surface area of the tea sample, the internal substances of the powder exposed, so that the water content and total water content reduced. The brightness of tea powder gradually increased, and the greenness increased. With the pulverization time prolonged, the content of tea polyphenols, free amino acids and other substances increased first and then decreased, while the contents of ascorbic acid and EGCG tended to reduce. The above results show that the superfine grinding process had a significant impact on the physicochemical characteristics of Matcha.
[1] 全国茶叶标准化技术委员会. 抹茶: GB/T 34778—2017 [S]. 北京: 中国标准出版社, 2017: 1.
[2] 王敬涵. 抹茶加工品质研究及抹茶酱产品研发[D]. 合肥: 安徽农业大学, 2017: 28-34.
[3] 刘东娜, 聂坤伦, 杜晓, 等. 抹茶品质的感官审评与成分分析[J]. 食品科学, 2014, 35(2): 168-172.
[4] 杨丽红. 不同加工工艺对超微绿茶粉品质的影响及应用[D]. 合肥: 安徽农业大学, 2015: 17-24.
[5] 杨春瑜, 薛海晶, 夏文水. 超微粉碎对绿茶黄酮类物质提取率及风味物质含量的影响[J]. 食品科学, 2007, 28(9): 319-324.
[6] 李华佳. 不同粒径富硒绿茶的特性及其活性研究[D]. 南京: 南京农业大学, 2008: 34-50.
[7] 任静. 富硒抹茶食品开发研究[D]. 上海: 上海师范大学, 2014: 1-3.
[8] Sawamura S, Haraguchi Y, Ikeda H, et al.Properties and shapes of matcha with various milling method[J]. Nippon Shokuhin Kogyo Gakkaishi, 2010, 57(7): 304-309.
[9] Sawamura S, Haraguchi Y, Yasuda M, et al.Flowability properties of matcha varying with particle size and milling method[J]. Nippon Shokuhin Kagaku Kogaku Kaishi=Journal of the Japanese Society for Food Science and Technology, 2009, 56(2): 103-107.
[10] Hu J, Chen Y, Ni D.Effect of superfine grinding on quality and antioxidant property of fine green tea powders[J]. LWT-Food Science and Technology, 2012, 45(1): 8-12.
[11] Phongnarisorn B, Orfila C, Holmes M, et al. Enrichment of biscuits with matcha green tea powder: its impact on consumer acceptability and acute metabolic response [J]. Foods, 2018, 7(2): 17. https://doi.org/10.3390/foods7020017.
[12] Haraguchi Y, Imada Y, Sawamura S.Production and characterization of fine matcha [powdered tea leaf] for processed food[J]. Journal of the Japanese Society for Food Science and Technology (Japan), 2003, 84(s1/3): 363-364.
[13] 李季. 超微茶粉理化分析及红茶巧克力饼干的开发[D]. 重庆: 西南大学, 2017: 5-10.
[14] Xiao W, Yang Z, Fan C, et al.A method for producing superfine black tea powder with enhanced infusion and dispersion property[J]. Food Chemistry, 2017, 214: 242-247.
[15] 刘建成. 鱼腥草超微粉特性及其指纹图谱研究[D]. 福州: 福建农林大学, 2007: 20.
[16] 黄梅华, 吴儒华, 何全光, 等. 不同粒径金花茶茶花粉体物理特性[J]. 食品科学, 2018(3): 76-82.
[17] 杜冰, 焦艳丽, 江东文, 等. 低温液氮粉碎对绿茶粉品质影响[J]. 农业工程学报, 2012, 28(2): 256-261.
[18] Xu F, Jin X, Zhang L, et al.Investigation on water status and distribution in broccoli and the effects of drying on water status using NMR and MRI methods[J]. Food Research International, 2017, 96: 191-197.
[19] 李然, 陈珊珊, 俞捷, 等. 应用低场核磁共振技术测定茶叶含水量[J]. 茶叶科学, 2010, 30(6): 38-42.
[20] 金心怡, 陈济斌, 吉克温. 茶叶加工工程[M]. 北京: 中国农业出版社, 2014: 6-9.
[21] 国家技术监局. 表面活性剂粉体和颗粒休止角的测量: GB/T 11986—1989[S]. 北京: 中国标准出版社, 1990: 183-186.
[22] 褚飞洋, 陈鹤立, 孙典, 等. 超微粉碎对工夫红茶物化特性的影响[J]. 茶叶科学, 2017, 37(6): 616-622.
[23] 中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准食品中水分的测定: GB 5009.3—2016[S]. 北京: 中国标准出版社, 2016: 1-2.
[24] 张阳, 肖卫华, 纪冠亚, 等. 机械超微粉碎与不同粒度常规粉碎对红茶理化特性的影响[J]. 农业工程学报, 2016, 32(11): 295-301.
[25] 国家市场监督管理总局. 茶叶中茶多酚和儿茶素类含量检测: GB/T 8313—2018[S]. 北京: 中国标准出版社, 2018: 1-6.
[26] 全国茶叶标准化技术委员会. 茶游离氨基酸总量测定: GB/T 8314—2013[S]. 北京: 中国标准出版社, 2013: 1-3.
[27] 中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准食品中抗坏血酸(滴定法)测定: GB 5009.86—2016[S]. 北京: 中国标准出版社, 2016: 7-8.
[28] 李博桢. 超微茶粉感官品质和理化性质研究及其应用[D]. 杭州: 浙江农林大学, 2016: 17-18.
[29] 聂志矗. 茶叶主要组份的光谱特性研究[D]. 保定: 河北大学, 2010: 14-25.
[30] 翁诗甫. 傅里叶变换红外光谱仪[M]. 北京: 化学工业出版社, 2005: 239-287.
[31] Bertram H C, Purslow P P, Andersen H J.Relationship between meat structure, water mobility, and distribution: a low-field nuclear magnetic resonance study[J]. Journal of Agricultural & Food Chemistry, 2002, 50(4): 824-829.
[32] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003: 224-239.
[33] Takahashi K .Ultrafine ground tea dispersion and food or beverage containing the same[J]. 2004.
[34] Ning J, Hou G G, Sun J, et al.Effect of green tea powder on the quality attributes and antioxidant activity of whole-wheat flour pan bread[J]. LWT-Food Science and Technology, 2017, 79: 342-348.
[35] 王奕. 超微绿茶粉在化妆品和食品中的应用研究[D]. 杭州: 浙江大学, 2010: 1-10.
[36] Hasegawa N, Yamda N, Mori M.Powdered green tea has antilipogenic effect on Zucker rats fed a high-fat diet[J]. Phytotherapy Research, 2003, 17(5): 477-480.
[37] Cai H, Xu L, Chen G, et al.Removal of fluoride from drinking water using modified ultrafine tea powder processed using a ball-mill[J]. Applied Surface Science, 2016, 375: 74-84.