Welcome to Journal of Tea Science,Today is

A Review on the Technique of Tea Decaffeination

  • XU Yong-quan ,
  • YIN Jun-feng ,
  • YUAN Hai-bo ,
  • CHEN Jian-xin ,
  • WANG Fang
Expand
  • Tea Research Institute, CAAS; Key Laboratory of Tea Chemical Engineering of Agriculture Ministry, Hangzhou 310008, China

Received date: 2007-07-16

  Revised date: 2007-09-17

  Online published: 2019-09-16

Abstract

It is reported that tea has many medical functions. However, consumers prefer decaffeinated tea and tea products due to caffeine’s negative disadvantageous. Decaffeination is realized by different methods, including the traditional methods such as water decaffeination, solvent extraction, adsorption separating and supercritical carbon dioxide extraction. The recent developmental microbial and enzymatic degradation and breeding low caffeine tea varieties are also developed for removal of caffeine. The investigation on tea decaffeination was reviewed, and the feasibility was discussed in this paper. The techniques of water decaffeination combined with adsorption separating, microbial and enzymatic degradation as well as low caffeine tea breeding were regarded as the main developmental direction of tea decaffeination by the authors.

Cite this article

XU Yong-quan , YIN Jun-feng , YUAN Hai-bo , CHEN Jian-xin , WANG Fang . A Review on the Technique of Tea Decaffeination[J]. Journal of Tea Science, 2008 , 28(1) : 1 -8 . DOI: 10.13305/j.cnki.jts.2008.01.001

References

[1] 朱永兴, Herve Huang.茶与健康[M]. 北京: 中国农业科学科学技术出版社, 2004.
[2] Smith A.Effects of caffeine on human behavior[J]. Food and Chemical Toxicology, 2002(9): 1243~1255.
[3] Shilo L, Sabbah H, Hadari R, et al. The effects of coffee consumption on sleep and melatonin sectretion[J]. Sleep Med, 2002, 3: 271~273.
[4] Lane JD, Pieper CF, Phillips-Bute BG, et al. Caffeine affects cardiovascular and neuroendocrine activation at work and home[J]. Psychosomatic Medicine, 2002(64): 595~603.
[5] 张清林. 咖啡和咖啡因的致突变作用[J]. 中国公共卫生, 1995(4): 162~164.
[6] Wen WQ, Shu XO, Jacobs DR, et al. The associations of maternal caffeine consumption and nausea with spontaneous abortion[J]. Epidemology, 2001(1): 38~42.
[7] 孙成, 权启爱, 金寿珍. 低咖啡因茶加工关键技术及设备的研究[J]. 茶叶科学, 2003, 23(增): 68~72.
[8] 中国农业科学院茶叶研究所. 茶叶咖啡因脱除机[P]. 中国: CN99242589.1.
[9] Liang HL, Liang YR, Dong JJ, et al. Decaffeination of fresh green tea leaf (Camellia sinensis) by hot water treatment[J]. Food Chemistry, 2007, 101: 1451~1456.
[10] 浙江大学. 用茶树生叶制取低咖啡因速溶茶粉和天然咖啡因粗品的方法[P]. 中国: 200610053186.2.
[11] 陆导仁, 裵庆云, 单达先, 等. 一种脱咖啡碱的茶多酚的生产方法[P]. 中国, 专利号: CN1097411.
[12] 周海宾, 宋新生. 超临界CO2脱除茶叶咖啡碱的工艺优化研究[J]. 食品科学, 2003(5): 88~91.
[13] Iwai Y, Nagano H, Lee GS, et al. Measurement of entrainer effects of water and ethanol on solubility of caffeine in supercritical carbon dioxide by FI-IR spectroscopy[J]. J of Supercritical Fluids, 2006, 3(38): 312~318.
[14] 满瑞林, 贾海亭, 蒋崇文, 等. 水在超临界CO2脱除绿茶中咖啡因的作用研究[J]. 化学工程师, 2005, 2: 9~12.
[15] 于华忠, 周冬武, 李国章, 等. 微波预处理对超临界CO2脱除绿茶中咖啡因和EGCG影响的研究[J]. 茶叶科学, 2005, 25(3): 203~207.
[16] SKW特罗斯特贝格股份公司. 去除茶叶中咖啡因的方法[P].中国: CN86103112.
[17] SKM乔斯特博股份有限公司. 脱咖啡因茶叶的生产工艺[P].中国: CN85102970.
[18] 上海交通大学. 用超临界二氧化碳脱除茶多酚中咖啡因的方法[P]. 中国: CN200410054009.7.
[19] Gehrig, Manfred, Forster, Adrian.Process for the production of decaffeinated tea[P]. US: 07/350, 228.
[20] 美晨集团股份有限公司. 超临界二氧化碳萃取法脱除茶叶中的咖啡因的工艺[P]. 中国: 200510036108.7.
[21] 小仓义和, 大石进, 福田昌弘, 等. 含有咖啡因的儿茶素类组合物的脱咖啡因的方法[P]. 中国, 专利号: CN1708238.
[22] Sakanaka S.A noval convenient process to obtain a raw decaffeinated tea polyphenol fraction using a lignocellulose column[J]. Journal of Agricultural and Food Chemistry, 2003, 51: 3140~3143.
[23] 浙江大学. 从茶多酚粗提物中脱去咖啡因的方法[P]. 中国: CN200610049639.4.
[24] 唐课文, 周春山, 钟世安, 等. 聚酰胺树脂对茶多酚和咖啡因吸附选择性研究[J]. 光谱学与光谱分析, 2003, 2: 143~145.
[25] 龚雨顺, 刘仲华, 黄建安, 等. 大孔吸附树脂分离茶儿茶素和咖啡因的研究[J]. 湖南农业大学学报(自然科学版), 2005, 2: 50~52.
[26] 三达膜科技(厦门)有限公司. 一种低咖啡因的高纯茶多酚的生产方法[P]. 中国: 200410052404.1.
[27] Sundarraj CV, Dhala S.Effect of naturally occurring xanthines on bacteria (I). Antimicrobial action and potentiating effect on antibiotic spectra[J]. Appl Microbiol, 1965, 13: 432~437.
[28] Blecher R, Lingens F.Metabolism of caffeine by Pseudomonas putida[J]. Hoppe Seyler’s Z Physiol Chem, 1977, 358: 807~823.
[29] Mazzafera P, Olsson O, Sandberg G.Degradation of caffeine and related methyl xanthines by Serratia marcescens isolated from soil under coffee cultivation[J]. Microb Ecol, 1994, 31: 199~207.
[30] Asano Y, Komeda T, Yamada H.Microbial production of theobromine from caffeine[J]. Biosci Biotech Biochem, 1993, 57: 1286~1294.
[31] Ramarethinam S, Rajalakshmi N.Caffeine in tea plants [Camellia sinensis (L.) O. Kuntze]: in situ lowering by Bacillus licheniformis (Weigmann) Chester[J]. Indian J Exp Biol. 2004, 42(6): 575~655.
[32] Kurtzman Jr RH, Schwimmer S.Caffein removal from growth media by microorganism[J]. Experientia, 1971, 27: 481~482.
[33] Schwimmer S, Khurtzman Jr RH, Heftmann E.Caffein metabolism by Penicillium roqueforti[J]. Arch Biochem Biophys, 1971,147: 109~121.
[34] Roussos S, Angeles-Aquiahuatl MDL, Trejo-Hernandez MDR, et al. Biotechnological management of coffee pulp-isolation, screening, characterization, selection of caffeine degrading fungi and natural microflora present in coffee pulp and husk[J]. Appl Microbiol Biotechnol, 1995, 42: 756~817.
[35] Gokulakrishnan S, Chandraraj K, Gummadi SN.Microbial and enzymatic methods for the removal of caffeine[J]. Enzyme and Microbial Technology, 2005, 37: 225~232.
[36] Ashihara H, Gillies FM, Crozier A.Metabolism of caffeine and related purine alkaloids in leafs of tea (Camellia Sinensis)[J]. Plant Cell Physiol, 1997, 38: 413~421.
[37] Khanna KL, Rao GS, Cornish HH.Metabolism of caffeine-3H in the rat[J]. Toxicol Appl Pharmacol, 1972, 23: 720~750.
[38] Keyaa CA, Crozier A, Ashihara H.Inhibition of caffeine biosynthesis in tea (Camellia sinensis) and coffee (Coffee arabica) plants by ribavirin[J]. FEBS Lett, 2003, 554: 473~479.
[39] Asano Y, Komeda T, Yamada H.Enzymes involved in theobromine production from caffeine by a Pseudomonas putida No. 352[J]. Biosci Biotech Biochem, 1994, 58: 2303~2306.
[40] Hohnloser W, Osswalt B, Lingens F.Enzymological aspects of caffeine demethylation and formaldehyde oxidation by Pseudomonas putida C1[J]. Hoppe seyler’s Z Physiol Chem, 1980, 361: 1763~1768.
[41] Yamoka-Yano DM, Mazzafera P.Degradation of caffeine by Pseudomonas putida isolated from soil[J]. Allel J, 1998, 5: 23~34.
[42] 张广辉, 梁月荣, 吴颖. 咖啡因生物合成研究进展及在茶树育种中的应用[J]. 茶叶, 2005, 31(1): 18~23.
[43] 张广辉, 梁月荣, 陆建良, 等. 茶树咖啡因合成酶基因RNA干涉表达载体构建[J]. 茶叶科学, 2006, 26(4): 243~248.
[44] Chen L, Zhou ZX.Variations of main quality components of tea genetic resources [Camellia sinensis (L.) O. Kuntze] preserved in the china national germplasm tea repository[J]. Plant Foods for Human Nutrition, 2005, 60: 31~35.
[45] Takeda Y, Yanase Y, Amma S.Breeding of inter-specific hybrids between Camellia sinensis (L.) O. Kuntze and C. japonica L. and their characteristics[J]. Bull Natl Res Inst Vegetables Ornamental Plants Tea, Jpn B (Kanaya), 1987, 1: 11~21.
Outlines

/