[1] 朱永兴, Herve Huang.茶与健康[M]. 北京: 中国农业科学科学技术出版社, 2004.
[2] Smith A.Effects of caffeine on human behavior[J]. Food and Chemical Toxicology, 2002(9): 1243~1255.
[3] Shilo L, Sabbah H, Hadari R, et al. The effects of coffee consumption on sleep and melatonin sectretion[J]. Sleep Med, 2002, 3: 271~273.
[4] Lane JD, Pieper CF, Phillips-Bute BG, et al. Caffeine affects cardiovascular and neuroendocrine activation at work and home[J]. Psychosomatic Medicine, 2002(64): 595~603.
[5] 张清林. 咖啡和咖啡因的致突变作用[J]. 中国公共卫生, 1995(4): 162~164.
[6] Wen WQ, Shu XO, Jacobs DR, et al. The associations of maternal caffeine consumption and nausea with spontaneous abortion[J]. Epidemology, 2001(1): 38~42.
[7] 孙成, 权启爱, 金寿珍. 低咖啡因茶加工关键技术及设备的研究[J]. 茶叶科学, 2003, 23(增): 68~72.
[8] 中国农业科学院茶叶研究所. 茶叶咖啡因脱除机[P]. 中国: CN99242589.1.
[9] Liang HL, Liang YR, Dong JJ, et al. Decaffeination of fresh green tea leaf (Camellia sinensis) by hot water treatment[J]. Food Chemistry, 2007, 101: 1451~1456.
[10] 浙江大学. 用茶树生叶制取低咖啡因速溶茶粉和天然咖啡因粗品的方法[P]. 中国: 200610053186.2.
[11] 陆导仁, 裵庆云, 单达先, 等. 一种脱咖啡碱的茶多酚的生产方法[P]. 中国, 专利号: CN1097411.
[12] 周海宾, 宋新生. 超临界CO2脱除茶叶咖啡碱的工艺优化研究[J]. 食品科学, 2003(5): 88~91.
[13] Iwai Y, Nagano H, Lee GS, et al. Measurement of entrainer effects of water and ethanol on solubility of caffeine in supercritical carbon dioxide by FI-IR spectroscopy[J]. J of Supercritical Fluids, 2006, 3(38): 312~318.
[14] 满瑞林, 贾海亭, 蒋崇文, 等. 水在超临界CO2脱除绿茶中咖啡因的作用研究[J]. 化学工程师, 2005, 2: 9~12.
[15] 于华忠, 周冬武, 李国章, 等. 微波预处理对超临界CO2脱除绿茶中咖啡因和EGCG影响的研究[J]. 茶叶科学, 2005, 25(3): 203~207.
[16] SKW特罗斯特贝格股份公司. 去除茶叶中咖啡因的方法[P].中国: CN86103112.
[17] SKM乔斯特博股份有限公司. 脱咖啡因茶叶的生产工艺[P].中国: CN85102970.
[18] 上海交通大学. 用超临界二氧化碳脱除茶多酚中咖啡因的方法[P]. 中国: CN200410054009.7.
[19] Gehrig, Manfred, Forster, Adrian.Process for the production of decaffeinated tea[P]. US: 07/350, 228.
[20] 美晨集团股份有限公司. 超临界二氧化碳萃取法脱除茶叶中的咖啡因的工艺[P]. 中国: 200510036108.7.
[21] 小仓义和, 大石进, 福田昌弘, 等. 含有咖啡因的儿茶素类组合物的脱咖啡因的方法[P]. 中国, 专利号: CN1708238.
[22] Sakanaka S.A noval convenient process to obtain a raw decaffeinated tea polyphenol fraction using a lignocellulose column[J]. Journal of Agricultural and Food Chemistry, 2003, 51: 3140~3143.
[23] 浙江大学. 从茶多酚粗提物中脱去咖啡因的方法[P]. 中国: CN200610049639.4.
[24] 唐课文, 周春山, 钟世安, 等. 聚酰胺树脂对茶多酚和咖啡因吸附选择性研究[J]. 光谱学与光谱分析, 2003, 2: 143~145.
[25] 龚雨顺, 刘仲华, 黄建安, 等. 大孔吸附树脂分离茶儿茶素和咖啡因的研究[J]. 湖南农业大学学报(自然科学版), 2005, 2: 50~52.
[26] 三达膜科技(厦门)有限公司. 一种低咖啡因的高纯茶多酚的生产方法[P]. 中国: 200410052404.1.
[27] Sundarraj CV, Dhala S.Effect of naturally occurring xanthines on bacteria (I). Antimicrobial action and potentiating effect on antibiotic spectra[J]. Appl Microbiol, 1965, 13: 432~437.
[28] Blecher R, Lingens F.Metabolism of caffeine by Pseudomonas putida[J]. Hoppe Seyler’s Z Physiol Chem, 1977, 358: 807~823.
[29] Mazzafera P, Olsson O, Sandberg G.Degradation of caffeine and related methyl xanthines by Serratia marcescens isolated from soil under coffee cultivation[J]. Microb Ecol, 1994, 31: 199~207.
[30] Asano Y, Komeda T, Yamada H.Microbial production of theobromine from caffeine[J]. Biosci Biotech Biochem, 1993, 57: 1286~1294.
[31] Ramarethinam S, Rajalakshmi N.Caffeine in tea plants [Camellia sinensis (L.) O. Kuntze]: in situ lowering by Bacillus licheniformis (Weigmann) Chester[J]. Indian J Exp Biol. 2004, 42(6): 575~655.
[32] Kurtzman Jr RH, Schwimmer S.Caffein removal from growth media by microorganism[J]. Experientia, 1971, 27: 481~482.
[33] Schwimmer S, Khurtzman Jr RH, Heftmann E.Caffein metabolism by Penicillium roqueforti[J]. Arch Biochem Biophys, 1971,147: 109~121.
[34] Roussos S, Angeles-Aquiahuatl MDL, Trejo-Hernandez MDR, et al. Biotechnological management of coffee pulp-isolation, screening, characterization, selection of caffeine degrading fungi and natural microflora present in coffee pulp and husk[J]. Appl Microbiol Biotechnol, 1995, 42: 756~817.
[35] Gokulakrishnan S, Chandraraj K, Gummadi SN.Microbial and enzymatic methods for the removal of caffeine[J]. Enzyme and Microbial Technology, 2005, 37: 225~232.
[36] Ashihara H, Gillies FM, Crozier A.Metabolism of caffeine and related purine alkaloids in leafs of tea (Camellia Sinensis)[J]. Plant Cell Physiol, 1997, 38: 413~421.
[37] Khanna KL, Rao GS, Cornish HH.Metabolism of caffeine-3H in the rat[J]. Toxicol Appl Pharmacol, 1972, 23: 720~750.
[38] Keyaa CA, Crozier A, Ashihara H.Inhibition of caffeine biosynthesis in tea (Camellia sinensis) and coffee (Coffee arabica) plants by ribavirin[J]. FEBS Lett, 2003, 554: 473~479.
[39] Asano Y, Komeda T, Yamada H.Enzymes involved in theobromine production from caffeine by a Pseudomonas putida No. 352[J]. Biosci Biotech Biochem, 1994, 58: 2303~2306.
[40] Hohnloser W, Osswalt B, Lingens F.Enzymological aspects of caffeine demethylation and formaldehyde oxidation by Pseudomonas putida C1[J]. Hoppe seyler’s Z Physiol Chem, 1980, 361: 1763~1768.
[41] Yamoka-Yano DM, Mazzafera P.Degradation of caffeine by Pseudomonas putida isolated from soil[J]. Allel J, 1998, 5: 23~34.
[42] 张广辉, 梁月荣, 吴颖. 咖啡因生物合成研究进展及在茶树育种中的应用[J]. 茶叶, 2005, 31(1): 18~23.
[43] 张广辉, 梁月荣, 陆建良, 等. 茶树咖啡因合成酶基因RNA干涉表达载体构建[J]. 茶叶科学, 2006, 26(4): 243~248.
[44] Chen L, Zhou ZX.Variations of main quality components of tea genetic resources [Camellia sinensis (L.) O. Kuntze] preserved in the china national germplasm tea repository[J]. Plant Foods for Human Nutrition, 2005, 60: 31~35.
[45] Takeda Y, Yanase Y, Amma S.Breeding of inter-specific hybrids between Camellia sinensis (L.) O. Kuntze and C. japonica L. and their characteristics[J]. Bull Natl Res Inst Vegetables Ornamental Plants Tea, Jpn B (Kanaya), 1987, 1: 11~21.