Welcome to Journal of Tea Science,Today is

Transcriptome Analysis of the Tea Leaves (Camellia sinensis var. assamica) Infected by Tea Blister Blight

  • SUN Yunnan ,
  • XU Yan ,
  • RAN Longxun ,
  • JIANG Huibing ,
  • SONG Weixi ,
  • XIA Lifei ,
  • CHEN Linbo ,
  • LIANG Mingzhi
Expand
  • Tea Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Engineering Research Center of Tea Germplasm Innovation and Matching Cultivation/Yunnan Provincial Key Laboratory of Tea Science, Menghai 666201, China

Received date: 2019-04-02

  Revised date: 2019-06-18

  Online published: 2020-02-04

Abstract

Illumina HiSeq2500, a high-through transcriptome sequencing technology, was applied for transcriptome analysis of tea leaves infected by tea blister blight. Through differential expression analysis, a total of 359 differentially expressed genes (DEGs)were identified after infection, of which 248 were up-regulated and 111 were down-regulated. With GO function annotation classifications, a total of 216 genes were divided into 122 function categories. The mainly involved functional categories included biological synthesis process, catalytic activity, cell process and many other physiological and biochemical processes. KEGG enrichment analysis showed that a total of 106 genes were annotated to 47 metabolic pathways, with monoterpenoid biosynthesis, porphyrin and chlorophyll metabolism, ribosome, nitrogen metabolism, diterpenoid biosynthesis, plant-pathogen interaction pathway significantly enriched. There were 32 differentially expressed transcription factors (TFs). Those TFs were classified into 16 families. qRT-PCR of randomly selected differentially expressed genes was used to validate transcriptome result, which showed high consistence. The result shows that tea tree response to pathogen infection is a complicated process. A number of genes were induced or suppressed. Disease-resistant transcription factors were highly activated and up-regulated. This study provided a theoretical basis for identifying tea resistance genes and potential molecular mechanism.

Cite this article

SUN Yunnan , XU Yan , RAN Longxun , JIANG Huibing , SONG Weixi , XIA Lifei , CHEN Linbo , LIANG Mingzhi . Transcriptome Analysis of the Tea Leaves (Camellia sinensis var. assamica) Infected by Tea Blister Blight[J]. Journal of Tea Science, 2020 , 40(1) : 113 -124 . DOI: 10.13305/j.cnki.jts.2020.01.001

References

[1] 蒲国涛, 张锡友, 胡春学, 等. 茶树茶饼病防治研究进展[J]. 陕西农业科学, 2015, 61(5): 79-81.
Pu G T, Zhang X Y, Hu C X, et al.Research advances in management of tea blister blight[J]. Shaanxi Journal of Agricultural Sciences, 2015, 61(5): 79-81.
[2] 陈宗懋. 茶树病害的诊断和防治[M]. 上海: 上海科学技术出版社, 1990.
Chen Z M.Diagnosis and prevention of tea tree diseases [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1990.
[3] 郑国建, 高海燕. 我国茶叶产品质量安全现状分析[J]. 食品安全质量检测学报, 2015, 6(7): 2869-2872.
Zheng G J, Gao H Y.The status analysis of tea quality safety in China[J]. Journal of Food Safety & Quality, 2015, 6(7): 2869-2872.
[4] 谭荣荣, 毛迎新, 龚自明. 茶饼病的发生规律及病原菌的生物学特性研究[J], 湖北农业科学, 2015, 54(20): 5027-5030.
Tan R R, Mao Y X, Gong Z M.Studies on the occurrence law of tea blister blight and biological characteristics of Exobasidium vexans Massee[J]. Hubei Agricultural Sciences, 2015, 54(20): 5027-5030.
[5] 智亚楠, 陈利军, 史洪中, 等. 茶树茶饼病的综合防治研究进展[J]. 信阳农林学院学报, 2018, 28(1): 98-100.
Zhi Y N, Chen L J, Shi H Z, et al.Research advances in integrated management of tea blister blight[J]. Journal of Xinyang Agriculture and Forestry University, 2018, 28(1): 98-100.
[6] 赵晓珍, 王勇, 任亚峰, 等. 茶饼病病原—Exobasidium vexans侵染茶树叶片过程的形态学观察[J]. 中国农学通报, 2018, 34(5): 117-122.
Zhao X Z, Wang Y, Ren Y F, et al.The morphology observation of infection process for the pathogen Exobasidium vexans of tea blister blight against tea leaf[J]. Chinese Agricultural Science Bulletin, 2018, 34(5): 117-122.
[7] 郭春秋, 王文龙, 吴娜. 茶饼病菌的分离培养及其刺激作用[J]. 吉首大学学报(自然科学版), 2005, 26(4): 103-108.
Guo C Q, Wang W L, Wu N.Culture of Exobasidium Gracile (Shirai) Syd and its stimulating effects[J]. Journal of Jishou University(Natural Sciences Edition), 2005, 26(4): 103-108.
[8] Tian L, Shi S, Nasir F, et al.Comparative analysis of the root transcriptomes of cultivated and wild rice varieties in response to Magnaporthe oryzae infection revealed both common and species-specific pathogen responses[J]. Rice, 2018, 11(1): 26. doi: 10.1186/s12284-018-0211-8.
[9] Windram O, Madhou P, McHattie S, et al. Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis[J]. The Plant Cell, 2012, 24(9): 3530-3557.
[10] Smith J E, Mengesha B, Tang H, et al.Resistance to Botrytis cinerea in Solanum lycopersicoides involves widespread transcriptional reprogramming[J]. BMC Genomics, 2014, 15(1): 334. doi: 10.1186/1471-2164-15-334.
[11] Li X, Zhu L, Tu L, et al.Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry[J]. Journal of Experimental Botany, 2011, 62(15): 5607-5621.
[12] Ke X, Yin Z, Song N, et al.Transcriptome profiling to identify genes involved in pathogenicity of Valsa mali on apple tree[J]. Fungal Genetics and Biology, 2014, 68(7): 31-38.
[13] Wu J, Zhang Y, Zhang H, et al.Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology[J]. BMC Plant Biology, 2010(10): 234. doi: 10.1186/1471-2229-10-234.
[14] Wang Y, Zhou Z, Gao J, et al.The mechanisms of maize resistance to Fusarium verticillioides by comprehensive analysis of RNA-seq data[J]. Front Plant Scienec, 2016(7): 1654. doi: 10.3389/fpls.2016.01654.
[15] Serrazina S, Santos C, Machado H, et al.Castanea root transcriptome in response to Phytophthora cinnamomi challenge[J]. Tree Genetics & Genomes, 2015(11): 6. doi: 10.1007/s11295-014-0829-7.
[16] Faino L, de Jonge R, Thomma B.P. The transcriptome of Verticillium dahliae-infected Nicotiana benthamiana determined by deep RNA sequencing[J]. Plant Signaling & Behavior, 2012, 7(9): 1065-1069.
[17] 王玉春. 中国茶树炭疽菌系统发育学研究及茶树咖啡碱抗炭疽病的作用[D]. 杨凌: 西北农林科技大学, 2016.
Wang Y C.Phylogenetics of Colletotrichum species isolated from Camellia sinensis in China and effects of caffeine in tea plant resistance to anthracnose [D]. Yangling: Northwest A&F University, 2016.
[18] 冉隆洵, 玉香甩, 曾莉, 等. 云南大叶种茶树茶饼病发生及防治研究[J]. 西南农业学报, 2009, 22(3): 651-654.
Ran L X, Yu X S, Ceng L, et al.Occurrence and control of Exobasidium vexans Massee on large-leaf variety tea plants in Menghai tea growing area[J]. Southwest China Journal of Agricultural Sciences, 2009, 22(3): 651-654.
[19] 李向阳, 齐普应, 陈凯, 等. 几种生物农药对高海拔茶区茶饼病的防效试验初报[J]. 茶叶学报, 2017, 58(4): 201-203.
Li X Y, Qi P Y, Chen K, et al.A preliminary study on biopesticides for controlling Exobasidium vexans Massee at high altitude tea plantations[J]. Acta Tea Sinica, 2017, 58(4): 201-203.
[20] 魏朝霞, 唐嘉义. 4种生物农药对茶饼病的防效试验[J]. 贵州农业科学, 2011, 39(3): 98-100.
Wei C X, Tang J Y.Control effect of four biological pesticides on Exobasidium vexans[J]. Guizhou Agricultural Sciences, 2011, 39(3): 98-100.
[21] 吴全聪, 陈方景, 雷永宏, 等. 丽水市茶饼病发生及影响因子分析[J]. 茶叶科学, 2013, 33(2): 131-139.
Wu Q C, Chen F J, Lei Y H, et al.Analysis on the occurrence and its influencing factors of tea blister blight in Lishui city[J]. Journal of Tea Science, 2013, 33(2): 131-139.
[22] 王绍梅, 宋文明. 茶饼病的发生规律与综合防治[J]. 云南农业科技, 2012(4): 45-46.
Wang S M, Song W M.The occurrence law of tea blister blight and its comprehensive[J]. Yunnan Agricultural Science and Technology, 2012(4): 45-46.
[23] Cantu D, Vicente A, Labavitch J, et al.Strangers in the matrix: plant cell walls and pathogen susceptibility[J]. Trends in Plant Science, 2008, 13(11): 610-617.
[24] Underwood W, Somerville S.Focal accumulation of defences at sites of fungal pathogen attack[J]. Journal of Experimental Botany, 2008, 59(13): 3501-3508.
[25] Schulze-Lefert P.Knocking on the heaven’s wall: pathogenesis of and resistance to biotrophic fungi at the cell wall[J]. Current Opinion in Plant Biology, 2004, 7(4): 377-383.
[26] Lipka V, Dittgen J, Bednarek P, et al.Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis[J]. Science, 2005, 310(5751): 1180-1183.
[27] 郭艳玲, 张鹏英, 郭默然, 等. 次生代谢产物与植物抗病防御反应[J]. 植物生理学报, 2012, 48(5): 429-434.
Guo Y L, Zhang P Y, Guo M R, et al.Secondary metabolites and plant defence against pathogenic disease[J]. Plant Physiology Journal, 2012, 48(5): 429-434.
[28] Ahuja I, Kissen R, Bones A.Phytoalexins in defense against pathogens[J]. Trends in Plant Science, 2012, 17(2): 73-90.
[29] Lecourieux D, Lamotte O, Bourque S, et al.Proteinaceous and oligosaccharidic elicitors induce different calcium signatures in the nucleus of tobacco cells[J]. Cell Calcium, 2005, 38(6): 527-538.
[30] Dodd A, Kudla J, Sanders D.The language of calcium signaling[J]. Annual Review of Plant Biology, 2010, 61(4): 593-620.
[31] Yamakawa H, Mitsuhara I, Ito N, et al.Transcriptionally and post-transcriptionally regulated response of 13 calmodulin genes to tobacco mosaic virus-induced cell death and wounding in tobacco plant[J]. European Journal of Biochemistry, 2001, 268(14): 3916-3929.
[32] Lu D, Wu S, Gao X, et al.A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(1): 496-501.
[33] Seifi H, Van Bockhaven J, Angenon G, et al.Glutamate metabolism in plant disease and defense: friend or foe?[J]. Molecular Plant-microbe Interactions, 2013, 26(5): 475-485.
[34] Kadotani N, Akagi A, Takatsuji H, et al.Exogenous proteinogenic amino acids induce systemic resistance in rice[J]. BMC Plant Biology, 2016, 16(1): 60. doi: 10.1186/s12870-016-0748-x.
[35] 杨佳丽. L-谷氨酸对果实抗性的诱导作用及其相关机理研究[D]. 杭州: 浙江大学, 2017.
Yang J L.Effect of L-glutamate on inhibiting postharvest diseases by inducing resistance in fruit and the possible defense mechanisms involved [D]. Hangzhou: Zhejiang University, 2017.
[36] 何兰兰, 柴蒙亮, 韩泽刚, 等. 棉花抗枯萎病相关ERF-B3亚组转录因子的克隆与表达[J]. 西北植物学报, 2013, 33(12): 2375-2381.
He L L, Cai M L, Han Z G, et al.Cloning and expression of ERF-B3 subgroup transcription factor related to resistant Fusarium oxysporum f. sp. vasin fectum in cotton[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(12): 2375-2381.
[37] Zhao Y, Wei T, Yin K, et al.Arabidopsis RAP2.2 plays an important role in plant resistance to Botrytis cinerea and ethylene responses[J]. New Phytologist, 2012, 195(2): 450-460.
[38] Raffaele S, Rivas S, Roby D.An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis[J]. FEBS Letters, 2006, 580(14): 3498-3504.
[39] McHale N, Koning R. PHANTASTICA regulates development of the adaxial mesophyll in nicotiana leaves[J]. The Plant Cell, 2004, 16(5): 1251-1262.
[40] Tian Z, Zhang Y, Liu J, et al.Novel potato C2H2-type zinc finger protein gene, StZFP1, which responds to biotic and abiotic stress, plays a role in salt tolerance[J]. Plant Biology, 2010, 12(5): 689-697.
[41] Zhang H, Zhao T, Zhuang P, et al.NbCZF1, a novel C2H2-type zinc finger protein, as a new regulator of SsCut-induced plant immunity in Nicotiana benthamiana[J]. Plant and Cell Physiology, 2016, 57(12): 2472-2484.
[42] AbuQamar S, Chen X, Dhawan R, et al. Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection[J]. The Plant Journal, 2006, 48(1): 28-44.
[43] Guo Y, Yu Y, Wang D, et al.GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5[J]. New Phytologist, 2009, 183(1): 62-75.
[44] Mayrose M, Ekengren S, Melech-Bonfil S, et al.A novel link between tomato GRAS genes, plant disease resistance and mechanical stress response[J]. Molecular Plant Pathology, 2006, 7(6): 593-604.
Outlines

/