Green tea was modified by chemical reagents for preparing biosorbent to remove basic fuchsine in waste water. Effects of chemical reagents, relative concentration, initial concentration of basic fuchsine, adsorption time, temperature on the adsorption capacity and adsorption kinetics were investigated for optimum condition analysis. Results showed that the best chemical reagent was epichlorohydrin. The optimum concentration was 0.015 mol·L-1. The optimum initial concentration of basic fuchsine was 20 mg·L-1. The optimum temperature was 30℃. The optimum absorption time was 240 min. The maximum absorption capacity of the modified green tea reached 53.6 mg·g-1. The adsorption kinetics followed the pseudo-first-order kinetic model. According to the isothermal adsorption of fuchsin basic adsorption with modified green tea, the Langmuir model was suitable for application. The adsorption of fuchsin basic by modified green tea belongs to single molecule layer adsorption.
LI Zhuoli
,
CAI Xiaomin
,
XU Yijie
,
YUAN Jingyue
,
ZHENG Qunxiong
,
XIONG Chunhua
. Adsorption of Basic Fuchsine by Modified Green Tea[J]. Journal of Tea Science, 2016
, 36(6)
: 639
-645
.
DOI: 10.13305/j.cnki.jts.2016.06.011
[1] Yang SX, Wu YH, Aierken A, et al.Mono/competitive adsorption of Arsenic (III) and Nickel (II) using modified green tea waste [J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60: 213-221. Mono/competitive adsorption of Arsenic (III) and Nickel (II) using modified green tea waste [J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60: 213-221. http://dx.doi.org/10.1016/j.jtice.2015.07.007.
[2] Foroughi-dahra M, Abolghasemia H, Esmaielia M, et al. Experimental study on the adsorptive behavior of Congo red in cationic surfactant-modified tea waste[J]. Process Safety and Environmental Protection, 2015, 95(3): 226-236.
[3] 滕涛, 何穆, 李玉中. 改性茶叶对染料的生物吸附作用[J]. 贵州农业科学, 2012, 40(4): 206-208.
[4] 王艳, 苏雅娟, 李平, 等. 绿茶微粉对染料亚甲基蓝和孔雀石绿的吸附研究[J]. 中国食品学报, 2011, 11(4): 83-89.
[5] 白卯娟, 甘明强. 茶叶处理含氟废水的研究[J]. 茶叶科学, 2009, 29(4): 325-328.
[6] 王东梅, 龚正君, 陈钰, 等. ZnCl2改性花生壳对含铜废水的吸附研究[J]. 广东农业科学, 2013(19): 175-183.
[7] 简绍菊, 杨为森. 改性橙皮对水中中性红的吸附及其动力学[J]. 安徽农业大学学报, 2013, 40(3): 514-518.
[8] 李紫薇, 李小敏, 袁圣银, 等. 棉杆对水中碱性品红的吸附研究[J]. 水处理技术, 2015, 41(4): 66-70.
[9] 黄泱, 林永兴. 茶叶资源化利用及对染料废水的去除[J]. 漳州师范学院学报: 自然科学版, 2010, 2: 102-106.
[10] 余东向. 茶叶吸附染料作用的初步研究[J]. 离子交换与吸附, 1995, 11(5): 436-440.
[11] 朱振华, 李小敏, 张艺, 等. 改性橘皮对水中碱性品红的吸附[J]. 江苏农业科学, 2015, 43(5): 334-336.
[12] 韩婵, 钱和, 汪何雅. 绿茶吸附特性及单层水分吸附含量研究[J]. 江苏农业科学, 2011(1): 351-353.
[13] 黄泱, 林永兴. 茶叶资源化利用及对染料废水的去除[J]. 漳州师范学院学报, 2010(2): 102-106.
[14] Langmuir I.Adsorption of gases on plain surface of glass mica platinum[J]. Journal of the American Chemical Society, 1918, 40(9): 1361-1403.
[15] Xiong CH, Li YL, Wang GT.Selective removal of Hg (II) with polyacrylonitrile-2-amino-1,3,4-thiadiazole chelating resin: Batch and column study[J]. Chemical Engineering Journal, 2015, 259(9): 257-265.