Welcome to Journal of Tea Science,Today is

The Temperature Design of Tea Carding Machine Based on Fuzzy Controler

  • WANG Xiaoyong ,
  • LI Bing ,
  • ZENG Chen ,
  • LI Shangqing ,
  • XU Chenggang
Expand
  • 1. Engineering College, Anhui Agricultural University, Hefei 230036, China;
    2. Tea and Food Science and Technology College, Anhui Agricultural University, Hefei 230036, China

Received date: 2015-03-13

  Revised date: 2015-04-07

  Online published: 2019-08-26

Abstract

In order to prevent the color yellow, darker or burnt phenomenon generated in the tea carding, it is needed for effective control of the temperature during the tea carding, to improve the processing quality of tea. The combination of fuzzy algorithm and temperature control of the carding process, the Matlab was aplied in design and simulate, the carding experiment. Results showed that fuzzy temperature control on the main and auxiliary heating component with high precision, and small overshoot, the broken rate of tea is 6% (the traditional way of broken rate is 11.8%, fuzzy temperature control on single heating element broken rate of tea was 8.3%), temperature of 90℃, score is 932.5 points, is better than the traditional control method and the single heating parts, this study provides the reference for improving tea carding quality.

Cite this article

WANG Xiaoyong , LI Bing , ZENG Chen , LI Shangqing , XU Chenggang . The Temperature Design of Tea Carding Machine Based on Fuzzy Controler[J]. Journal of Tea Science, 2015 , 35(4) : 363 -369 . DOI: 10.13305/j.cnki.jts.2015.04.009

References

[1] 席爱民. 模糊控制技术[M]. 西安: 西安电子科技大学出版社, 2008.
[2] 王正林, 王胜开. MATLAB/Simulink与控制系统仿真[M]. 北京: 电子工业出版社, 2008.
[3] Cheng Qiming.A Study on New Fuzzy Neural Network Controller and Its Application[J]. Journal of System Simulation, 2001, 13(4): 491-493.
[4] Shi-zhongHe, Shaohua Tan, Feng-LanXu. Fuzzy self-tuning of PID controllers[J]. Fuzzy Sets and Systems, 1993, 56(1): 37-46.
[5] MooreCG, HarrisCJ. Indirect adaptive fuzzy control[J]. Journal of Control, 1992, 56(2): 441-468.
[6] SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Netural Network Letters, 1999, 9(3): 293-300.
[7] Lin Chunfu, Wang Shengde.Fuzzy support vector machines[J]. IEEE Transactions on Neural Networks, 2002, 13(2): 464-471.
[8] 鲁可, 张晓东, 余盛恺. 基于模糊控制算法的温度控制系统设计[J]. 机电产品开发与创新, 2013, 26(3): 133-135.
[9] 李兵, 李尚庆, 夏涛. 基于模糊PID控制的六安瓜片远红外烘焙机设计[J]. 农机化研究, 2011(8): 149-152.
[10] 刘铭. 基于模糊推理的PID参数整定算法的研究[D]. 长春: 吉林大学, 2012.
[11] 朱德泉, 蒋克荣, 王继先, 等. 干燥过程模糊神经网络控制器的设计与仿真[J].系统仿真学报, 2009, 21(15): 4768-4751.
[12] Zhi dong, Zhu Xinjian, Cao Guangyi. Temperature Modeling of DMFC Based on RBFNN and Neural Fuzzy Control Study[J]. Journal of System Simulation (S1004-731X), 2007, 19(1): 126-129, 137.
[13] Astrom K J, Hang C C, Persson P.Towards intelligent PID control[J]. Automatica, 1992, 28(1): 1-9.
[14] 屈毅, 宁铎, 赖展翅, 等. 基于模糊PID控制的温室控制系统[J]. 计算机应用, 2009, 29(7): 1996-1999.
[15] 张小娟. 基于模糊PID的除氧器温度控制系统的研究与设计[D]. 西安: 西安理工大学, 2009.
Outlines

/