New clonal tea varieties 0306D, 0306F, 0306I from F1 population of Baijiguan and Huangdan were employed as test materials. Antioxidant enzyme activities of tea plants under low temperature were measured. The results showed that leaves under low temperature had higher conductivity, malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents with the increasing ratios higher in 0306D and 0306F than 0306I and Huangdan. The increasing ratios of peroxidase (POD), superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR) activities of the Huangdan and 0306I tea varieties were higher than 0306D and 0306F. While monodehydroascorbate reductase (MDAR), dehydroascorbate reductase (DHAR), ascorbate (ASC), reduced glutathione (GSH) and catalase (CAT) activities of 0306D and 0306F were less decreased than 0306I and Huangdan. The results indicated that higher activities of defense enzymes and higher antioxidant content in 0306I and Huangdan under stress were associated with chilling tolerance. Further regression analysis showed that the H2O2 content was negatively correlated with APX and CAT, and conductivity was negatively correlated with ASC content. The above results indicated that the tolerance to low temperature in 0306I and Huangdan was stronger than 0306F and 0306D.
[1] 宋祥春, 赵惠新, 苗玉青, 等. 低温对两种沙冬青幼苗光合生理指标的影响[J]. 新疆大学学报(理工版), 2009, 26(3): 342-346.
[2] Pieters A J, Paul M J, Lawlor D W.Low sink demands limits photosynthesis under Pi deficiency[J]. Journal of Experimental Botany, 2001, 52: 1083-1091.
[3] Lin Z H, Chen L S, Chen R B, et al.Antioxidant system of tea (Camellia sinensis) leaves in response to phosphorus supply[J]. Acta Physiologiae Plantarum,2012, 34: 2443-2448.
[4] Horling F, Lamkemeyer P, Konnig J, et al.Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis[J]. Plant Physiology, 2003, 131: 317-325.
[5] 孙富, 杨丽涛, 谢晓娜, 等. 低温胁迫对不同抗寒性甘蔗品种幼苗叶绿体生理代谢的影响[J]. 作物学报, 2012, 38(4): 732-739.
[6] Chen L J, Xiang H Z, Miao Y.An over view of cold resistance in plants[J]. Journal of Agronomy and Crop Science, 2014, 200: 237-245.
[7] 黄建安. 茶树保护性酶类与抗寒性的关系[J]. 茶叶科学, 1990, 10(1): 35-40.
[8] 田景花, 王红霞, 张志华, 等. 低温逆境对不同核桃品种抗氧化系统及超微结构的影响[J]. 应用生态学报, 2015, 26(5): 1320-1326.
[9] 崔摇翠, 王利鹃, 周清元, 等. 低温胁迫下烤烟幼苗叶片光合作用和抗氧化能力基因差异表达谱[J]. 生态学报, 2014, 34(21): 6076-6089.
[10] Liu W P, Su S C, Liu X.Comparison of different cultivars of blueberry over wintering ability in Qingdao of China[J]. American Journal of Plant Science, 2012, 3: 391-396.
[11] Fortunato A S, Lidon F C, Batista-Santos P.Biochemical and molecular characterization of the antioxidative system of coffea SP. under cold conditions in genotypes with contrasting tolerance[J]. Journal of plant Physiology, 2009, 167: 333-342.
[12] Taka T.The relationship of antioxidant enzymes and some physiological parameters in maize during chilling[J]. Plant Soil Environment, 2004, 50: 27-32.
[13] Huang M, Guo Z.Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity[J]. Biology Plant, 2005, 49: 81-84.
[14] Wang W B, Kim Y H, Lee H S, et al.Differential antioxidation activities in two alfalfa cultivars under chilling stress[J]. Plant Biotechnology Reports, 2009, 3(4): 301-307.
[15] Kang H M, Saltveit M E.Reduced chilling tolerance in elongating cucumber seedling radicles is related to their reduced antioxidant enzyme and DPPH-radical scavenging activity[J]. Plant Physiology 2002, 115:244-250.
[16] 蒋家月, 金凤玲, 王芸芳, 等.冬季自然低温胁迫对茶树抗寒生理指标的影响[J]. 安徽农业大学学报, 2012, 39(3): 394-396.
[17] 李叶云, 舒锡婷, 周月琴, 等. 自然越冬过程中3 个茶树品种的生理特性变化及抗寒性评价[J].植物资源与环境学报, 2014, 23(3): 52-58.
[18] Lichtenthaler, H K.Chlorophylls and carotenoids: pigments of photosynthetic biomembranes[J] . Methods Enzymol, 1987, 148: 350-382.
[19] Bradford M M.A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J] . Anal Biochemistry, 1976, 72: 248-254.
[20] Chen L S, Qi Y P, Liu X H.Effects of aluminum on light energy utilization and photoprotective systems in citrus leaves[J]. Annals of Botany 2005, 96: 35-41.
[21] Chen L S, Cheng L.Both xanthophyll cycle-dependent thermal dissipation and the antioxidant system are up-regulated in grape (Vitis labrusca L. cv. Concord) leaves in response to N limitation[J] . Journal of Experimental Botany, 2003, 54(390): 2165-2175.
[22] 林郑和. 茶树对缺磷的生理生化反应与适应[D]. 福州: 福建农林大学, 2009.
[23] Hodges D M, DeLong J M, Forney C F. Improving the thiobarbituric acid-reactive- substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds[J] . Planta, 1999, 207: 604-611.
[24] 孙海伟, 曹德航, 尚涛, 等. 茶树抗寒育种及转基因研究进展[J]. 山东农业科学, 2013, 45(6): 119-122.
[25] 郭瑞, 曾榕, 张金鑫, 等. 低温后不同光强对烤烟幼苗叶片活性氧代谢和叶绿素荧光参数的影响[J]. 华北农学报2015, 30(增刊1) : 225-230.
[26] 邵怡若, 许建新, 薛摇立, 等. 低温胁迫时间对4种幼苗生理生化及光合特性的影响[J]. 生态学报, 2013, 33(14): 4237-4247.
[27] 刘玉凤, 李天来, 高晓倩. 夜间低温胁迫对番茄叶片活性氧代谢及AsA-GSH 循环的影响[J]. 西北植物学报, 2011, 31(4): 707-714.
[28] 陈磊, 郭军, 田时炳, 等. 低温弱光胁迫对不同茄子品种幼苗抗氧化特性的影响. 西南农业学报, 2012, 25(6): 2054-2058.
[29] 李天来, 高晓倩, 刘玉凤. 夜间低温胁迫下钙对番茄幼苗根系活力及活性氧代谢的调控作用[J]. 西北农业学报, 2011, 20(8): 127-132.
[30] Willekens H, Inzé D, van Montagu M. Catalase in plants [J]. Mol Breeding1995(1): 207-228.
[31] 杨宁, 丁芳霞, 李宜珅, 等. 低温胁迫对高山离子芥试管苗膜脂过氧化及AsA-GSH循环系统的影响[J]. 西北师范大学学报(自然科学版), 2014, 50(5): 79-82.
[32] Foyer C H, Noctor G.Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria[J]. Physiologia Plantarum, 2003, 119: 355-364.
[33] Uchida A, Jagendorf AT, Hibino T, et al.Effect s of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice[J]. Plant Science, 2002, 163: 515-523.