欢迎访问《茶叶科学》,今天是

茶树花青素还原酶的酶学特性研究

  • 杨琴 ,
  • 赵磊 ,
  • 刘亚军 ,
  • 刘莉 ,
  • 王云生 ,
  • 高丽萍 ,
  • 夏涛
展开
  • 1. 安徽农业大学生命科学学院,安徽 合肥 230036;
    2. 安徽农业大学 教育部茶叶生物化学与生物技术重点实验室,安徽 合肥 230036
杨琴(1987— ),女,江苏南京人,硕士,主要从事茶树次生代谢及生物化学研究。

收稿日期: 2012-12-28

  修回日期: 2013-02-18

  网络出版日期: 2019-09-04

基金资助

国家自然科学基金(30972401、31170647、1170282、31000314)、安徽省自然科学基金(11040606M73)、安徽省高校自然科学基金(KJ2012A110)

Research on Enzymatic Characteristics of Anthocyanin Reductase of Tea Plant [Camellia sinensis (L.) O. Kuntze]

  • YANG Qin ,
  • ZHAO Lei ,
  • LIU Ya-jun ,
  • LIU Li ,
  • WANG Yun-sheng ,
  • GAO Li-ping ,
  • XIA Tao
Expand
  • 1. School of Biology Science, Anhui Agricultural University, Hefei 230036, China;
    2. Key Lab of Tea Biochemistry and Biotechnology, Ministry of Education, Anhui Agricultural University, Hefei 230036, China

Received date: 2012-12-28

  Revised date: 2013-02-18

  Online published: 2019-09-04

摘要

茶树花青素还原酶(CsANR)作为原花青素生物合成途径中的关键酶,催化花青素为相应的2,3-顺式-黄烷-3-醇。为了研究该酶的酶学特性,本文采用原核表达及钴离子亲和柱纯化技术,表达并纯化出目的蛋白;重点对CsANR1酶学特性进行研究分析。结果表明,CsANR1的最适反应温度为40℃,最适pH值为6.5;对底物矢车菊色素的亲和力高于飞燕草色素。Cu2+、Co2+、Fe2+、Mn2+、Zn2+和Hg2+等金属离子对酶有抑制作用,存放15βd后酶活下降50%。

本文引用格式

杨琴 , 赵磊 , 刘亚军 , 刘莉 , 王云生 , 高丽萍 , 夏涛 . 茶树花青素还原酶的酶学特性研究[J]. 茶叶科学, 2013 , 33(3) : 221 -228 . DOI: 10.13305/j.cnki.jts.2013.03.008

Abstract

Anthocyanidin reductase (ANR) is a key enzyme in the biosynthetic pathway of proanthocyanidins(PAs), which catalyzes anthocyanidins into the corresponding 2, 3-cis-flavan-3-ols. For researching enzymatic characteristics of the enzyme, this study was carried out to express and purify the protein by prokaryotic expression and Cobalt ion affinity column purification. The optimal conditions of CsANR1 were observed at 40℃ and pH 6.5. The more substrate preference of CsANR1 was showed on cyanidin over delphinidin. Moreover, Cu2+, Co2+, Fe2+, Mn2+, Zn2+ and Hg2+inhibited the enzyme activity and the enzyme activity decreased 50% after storing 15 days.

参考文献

[1] Mondal TK, Bhattacharya A, Laxmikumaran M, et al. Recent advances of tea(Camellia sinensis) biotechnology[J]. Plant Cell Tissue Org, 2004, 758(76): 195-254.
[2] Lin YS, Tsai YJ, Tsay JS, et al. Factors affecting the levels of tea polyphenols and caffeine in tea leaves[J]. J Agric Food Chem, 2003, 51(7): 1864-1873.
[3] Pang Y, Peel GJ, Wright E, et al. Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula[J]. Plant Physiol, 2007, 145(3): 601-615.
[4] Dixon RA, Xie DY, Sharma SB.Proanthocyanidins-a final frontier in flavonoid research[J]. New Phytol, 2004, 165(1): 9-28.
[5] Winkel BSJ.The biosynthesis of flavonoids[J]. The science of flavonoids, 2006: 71-95.
[6] Xie DY, Sharma SB, Paiva NL, et al. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis[J]. Science, 2003, 299(5605): 396-399.
[7] Tanner GJ, Francki KT, Abrahams S, et al. Proanthocyanidin biosynthesis in plants[J]. J Biol Chem, 2003, 278(34): 31647-31656.
[8] Saito K, Kobayashi M, Gong Z, et al. Direct evidence for anthocyanidin synthase as a 2‐oxoglutarate‐dependent oxygenase: molecular cloning and functional expression of cDNA from a red forma ofPerilla frutescens[J]. Plant J, 2002, 17(2): 181-189.
[9] Punyasiri PA, Abeysinghe IS, Kumar V, et al. Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways[J]. Arch Biochem Biophys, 2004, 431(1): 22-30.
[10] 张宪林, 高丽萍, 夏涛, 等. 茶树新梢中非酯型儿茶素及其合成酶的变化规律[J]. 茶叶科学, 2009, 29(5): 365-371.
[11] Zhang XL, Liu YJ, Gao KJ, et al. Characterisation of anthocyanidin reductase from Shuchazao green tea[J]. J Sci Food Agr, 2012, 92(7): 1533-1539.
[12] 骆洋, 王弘雪, 王云生, 等. 茶树花青素还原酶基因在大肠杆菌中的表达及优化[J]. 茶叶科学, 2011, 31(4): 326-332.
[13] Xie DY, Sharma SB, Dixon RA.Anthocyanidin reductases from Medicago truncatula and Arabidopsis thaliana[J]. Arch Biochem Biophys, 2004, 422(1): 91-102.
[14] Singh K, Rani A, Paul A, et al. Differential display mediated cloning of anthocyanidin reductase gene from tea (Camellia sinensis) and its relationship with the concentration of epicatechins[J]. Tree physiology, 2009, 29(6): 837-846.
[15] Gargouri M, Manigand C, Mauge C, et al. Structure and epimerase activity of anthocyanidin reductase from Vitis vinifera[J]. Acta Crystallogr D Biol Crystallogr, 2009, 65(9): 989-1000.
[16] Gargouri M, Chaudiere J, Manigand C, et al. The epimerase activity of anthocyanidin reductase from Vitis vinifera and its regiospecific hydride transfers[J]. Biol Chem, 2010, 391(2/3): 219-227.
文章导航

/