茶树花青素还原酶(CsANR)作为原花青素生物合成途径中的关键酶,催化花青素为相应的2,3-顺式-黄烷-3-醇。为了研究该酶的酶学特性,本文采用原核表达及钴离子亲和柱纯化技术,表达并纯化出目的蛋白;重点对CsANR1酶学特性进行研究分析。结果表明,CsANR1的最适反应温度为40℃,最适pH值为6.5;对底物矢车菊色素的亲和力高于飞燕草色素。Cu2+、Co2+、Fe2+、Mn2+、Zn2+和Hg2+等金属离子对酶有抑制作用,存放15βd后酶活下降50%。
Anthocyanidin reductase (ANR) is a key enzyme in the biosynthetic pathway of proanthocyanidins(PAs), which catalyzes anthocyanidins into the corresponding 2, 3-cis-flavan-3-ols. For researching enzymatic characteristics of the enzyme, this study was carried out to express and purify the protein by prokaryotic expression and Cobalt ion affinity column purification. The optimal conditions of CsANR1 were observed at 40℃ and pH 6.5. The more substrate preference of CsANR1 was showed on cyanidin over delphinidin. Moreover, Cu2+, Co2+, Fe2+, Mn2+, Zn2+ and Hg2+inhibited the enzyme activity and the enzyme activity decreased 50% after storing 15 days.
[1] Mondal TK, Bhattacharya A, Laxmikumaran M, et al. Recent advances of tea(Camellia sinensis) biotechnology[J]. Plant Cell Tissue Org, 2004, 758(76): 195-254.
[2] Lin YS, Tsai YJ, Tsay JS, et al. Factors affecting the levels of tea polyphenols and caffeine in tea leaves[J]. J Agric Food Chem, 2003, 51(7): 1864-1873.
[3] Pang Y, Peel GJ, Wright E, et al. Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula[J]. Plant Physiol, 2007, 145(3): 601-615.
[4] Dixon RA, Xie DY, Sharma SB.Proanthocyanidins-a final frontier in flavonoid research[J]. New Phytol, 2004, 165(1): 9-28.
[5] Winkel BSJ.The biosynthesis of flavonoids[J]. The science of flavonoids, 2006: 71-95.
[6] Xie DY, Sharma SB, Paiva NL, et al. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis[J]. Science, 2003, 299(5605): 396-399.
[7] Tanner GJ, Francki KT, Abrahams S, et al. Proanthocyanidin biosynthesis in plants[J]. J Biol Chem, 2003, 278(34): 31647-31656.
[8] Saito K, Kobayashi M, Gong Z, et al. Direct evidence for anthocyanidin synthase as a 2‐oxoglutarate‐dependent oxygenase: molecular cloning and functional expression of cDNA from a red forma ofPerilla frutescens[J]. Plant J, 2002, 17(2): 181-189.
[9] Punyasiri PA, Abeysinghe IS, Kumar V, et al. Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways[J]. Arch Biochem Biophys, 2004, 431(1): 22-30.
[10] 张宪林, 高丽萍, 夏涛, 等. 茶树新梢中非酯型儿茶素及其合成酶的变化规律[J]. 茶叶科学, 2009, 29(5): 365-371.
[11] Zhang XL, Liu YJ, Gao KJ, et al. Characterisation of anthocyanidin reductase from Shuchazao green tea[J]. J Sci Food Agr, 2012, 92(7): 1533-1539.
[12] 骆洋, 王弘雪, 王云生, 等. 茶树花青素还原酶基因在大肠杆菌中的表达及优化[J]. 茶叶科学, 2011, 31(4): 326-332.
[13] Xie DY, Sharma SB, Dixon RA.Anthocyanidin reductases from Medicago truncatula and Arabidopsis thaliana[J]. Arch Biochem Biophys, 2004, 422(1): 91-102.
[14] Singh K, Rani A, Paul A, et al. Differential display mediated cloning of anthocyanidin reductase gene from tea (Camellia sinensis) and its relationship with the concentration of epicatechins[J]. Tree physiology, 2009, 29(6): 837-846.
[15] Gargouri M, Manigand C, Mauge C, et al. Structure and epimerase activity of anthocyanidin reductase from Vitis vinifera[J]. Acta Crystallogr D Biol Crystallogr, 2009, 65(9): 989-1000.
[16] Gargouri M, Chaudiere J, Manigand C, et al. The epimerase activity of anthocyanidin reductase from Vitis vinifera and its regiospecific hydride transfers[J]. Biol Chem, 2010, 391(2/3): 219-227.