以4个茶树种质为试验材料,克隆得到茶叶中氨基酸合成转化关键酶基因:谷氨酸脱氢酶(GDH)、谷氨酰胺合成酶(GS)、谷氨酰胺α-酮戊二酸氨基转移酶(GOGAT)的保守区。在GenBank登录号分别为:JN602371、JN602372、JN602373。通过SYBR Green I实时荧光定量PCR检测,发现GDH酶基因在茶树种质0314C(相对高氨基酸种质)中的表达显著增强,而在0212-15种质(相对低氨基酸种质)中却显著下降。GS、GOGAT酶基因在种质0314C中表达显著下降,而在0212-15、0318D种质中显著增强。通过回归分析,GS基因表达与茶氨酸、赖氨酸、丙氨酸呈负相关,而GDH与茶氨酸呈正相关。
This research has separated gene conservative regions of glutamate dehydrogenase (GDH), Glutamine synthetase (GS) and Glutamine oxoglutarate aminotransferase (GOGAT), which were key enzymes involving in the metabolism of amino acid in tea plant, from four tea germplasms. Sequences of GDH, GS and GOGAT conservative regions have been submitted to GeneBank and their accession number were JN602371, JN602372 and JN602373, respectively. Real-time quantitative PCR analysis revealed that GDH gene has higher transcription in 0314C (germplasm with relatively high amino acid content) than the other three germplasms, while lower transcription in 0212-15 (germplasm with relatively low amino acid content) comparing to the others. The transcription of GS and GOGAT gene were in apparently low level in 0314C and high level in 0212-15 and 0318D, respectively. Regression analysis indicated that the expression of GS gene was negatively related to the contents of theanine, lysine and lactamine, whereas the expression of GDH gene was positively related to the content of theanine.
[1] 王云, 李春华, 赵康由, 等. 不同加工技术对名茶氨基酸含量的影响[J]. 西南农业学报, 1997, 10(4): 87-91.
[2] 陆锦时, 魏芳华, 李春华. 茶树新梢中主要游离氨基酸含量及组分对茶叶品种品质的影响[J]. 西南农业学报, 1994(增): 13-15.
[3] 李静, 夏建国. 氮磷钾与茶叶品质关系的研究综述[J]. 中国农学通报, 2005, 2l(1): 62-65.
[4] 许振柱, 周广胜. 植物氮代谢及其环境调节研究进展[J]. 应用生态学报, 2004, 15(3): 511-516.
[5] 黄冰艳, 高伟, 苗利娟, 等. 谷氨酰胺合成酶基因研究进展及其在植物氮代谢调控中的应用[J]. 中国农学通报, 2010, 26(23): 53-57.
[6] 潘丽峰, 李昆志, 陈丽梅. 谷氨酰胺合成酶植物基因工程应用研究进展[J]. 广东农业科学, 2007 (1): 106-108.
[7] 宛晓春. 茶叶生物化学[M]. 北京: 中国农业出版社, 2003.
[8] Lin Z-H, Qi Y-P, Chen R-B, et al. Effects of phosphorus supply on the quality of green tea[J]. Food Chemistry , 2012, 130: 908-914.
[9] WAN C Y, WILKINST A.A modified hot borate method significantly enhances the yield of high quality RNA from cotton (Gossypium hirsutum L.)[J]. Analytical Biochemistry, 1994, 223: 7-12.
[10] Lin Z-H, Chen L-S, Chen R-B, et al. Expression of genes for two phosphofructokinases, tonoplast ATPase subunit A, and pyrophosphatase of tea roots in response to phosphorus-deficiency[J]. Journal of Horticultural Science & Biotechnology, 2010, 85(5): 449-453.
[11] 孙美莲, 王云生, 杨冬青, 等. 茶树实时荧光定量PCR分析中内参基因的选择[J]. 植物学报, 2010, 45(5): 579-587.
[12] 乔小燕, 马春雷, 陈亮. 茶树黄酮合成酶II基因全长cDNA序列的克隆和实时荧光定量PCR检测[J]. 茶叶科学, 2009, 29(5): 347-354.
[13] Ransbotyn V, Reusch T B H. Housekeeping gene selection for quantitative real-time PCR assays in the seagrass Zostera manna subjected to heat stress[J]. Limnol Oceanogr Methods, 2006 (4): 367-373.
[14] Yoo WG, Kim TI, Li S, et al.Reference genes for quantitative analysis on Clonorchis sinensis gene expression by real-time PCR[J]. Parasitol Res, 2009, 104: 321-328.
[15] Cai H-M, Zhou Y, Xiao J-H, et al. Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice[J]. Plant Cell Report, 2009(28): 527-537.
[16] Migge A, Carrayol E, Hirel B, et al. Leaf specific overexpression of plastidic glutamine synthetase stimulates the growth of transgenic tobacco seedlings[J]. Planta, 2000, 210(2): 252-260.
[17] 张智猛, 万书波, 宁堂原, 等. 氮素水平对花生氮素代谢及相关酶活性的影响[J]. 植物生态学报, 2008, 32(6): 1407-1416.
[18] 孙辉, 黄其满, 苏金. 谷氨酰胺合成酶基因GS1和GS2的高效表达增强转基因水稻对氮素缺乏的耐性[J]. 植物生理与分子生物学学报, 2005, 31(5): 492-498.
[19] 陈胜勇, 李彩凤, 马凤鸬, 等. 甜菜谷氨酰胺成酶基因在不同氮素条件下的表达分析[J]. 作物杂志, 2008(4): 64-67.
[20] 李林海, 李明, 吴英松, 等. 恶性疟原虫谷氨酸脱氢酶的表达及免疫活性鉴定[J]. 第一军医大学学报, 2002, 22(10): 883-887.