欢迎访问《茶叶科学》,今天是

闽中某县茶园土壤-茶树-茶汤中镉含量及健康风险评价研究

  • 王峰 ,
  • 单睿阳 ,
  • 陈玉真 ,
  • 林栋良 ,
  • 臧春荣 ,
  • 陈常颂 ,
  • 尤志明 ,
  • 余文权
展开
  • 1. 福建省农业科学院茶叶研究所,福建 福安 355015;
    2. 福建农业科学院,福建 福州 350013
王峰,男,助理研究员,主要从事茶树栽培与环境生态的研究。

收稿日期: 2017-09-23

  修回日期: 2018-03-08

  网络出版日期: 2019-10-15

基金资助

国家茶叶产业技术体系(CARS-19、CARS-23)、福建农业科学院茶叶创新团队(STIT2017-1-3)、福建省科技重大专项(2017NZ0002)、福建省财政厅省直教育科研单位专项(20151297)

A Case Study of Cadmium Distribution in Soil-Tea Plant-Tea Soup System in Central Fujian Province and Relative Health Risk Assessment

  • WANG Feng ,
  • SHAN Ruiyang ,
  • CHEN Yuzhen ,
  • LIN Dongliang ,
  • ZANG Chunrong ,
  • CHEN Changsong ,
  • YOU Zhiming ,
  • YU Wenquan
Expand
  • 1. Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu′an 355015, China;
    2. Agriculture Ecology Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China

Received date: 2017-09-23

  Revised date: 2018-03-08

  Online published: 2019-10-15

摘要

以闽中某县8个代表性茶园为研究对象,采集茶园土壤和茶树各器官样品,分析镉在茶园土壤-茶树中积累和分布规律,并探讨其受土壤理化性质的影响;同时测定茶汤中镉含量并算出茶叶中镉的溶出率,利用美国国家环保署(USEPA)推荐的健康风险评价模型进行人体致癌健康风险评价。结果表明,茶园土壤全镉含量均值为112.74βμg·kg-1,是福建省土壤背景值的2.06倍,茶园土壤镉积累明显;茶园土壤有效镉含量均值为26.44βμg·kg-1,镉活化率均值为24.86%,有效程度较高。土壤pH和有机质是影响土壤镉及其有效性的主要因素,土壤全磷和速效磷是影响镉活化率的主要因子;茶树主根和侧根与土壤全镉、有效镉和有机质呈显著正相关(P<0.05),新叶镉含量与土壤有效镉和全磷呈显著正相关(P<0.05)。茶树各器官镉含量分布规律为:侧根(1β253.89βμg·kg-1)>主根(382.20βμg·kg-1)>主茎(167.25βμg·kg-1)≈侧茎(154.65βμg·kg-1)>老叶(30.60βμg·kg-1)≈新叶(27.13βμg·kg-1),茶树根部镉富集系数显著大于其他器官(P<0.05),新叶和老叶镉富集系数较低,镉大部分被根和茎固定,向叶的迁移能力较低。茶汤中镉含量均值为192.28βng·L-1,远低于《生活饮用水卫生标准》中镉含量,茶叶中镉溶出率均值为15.29%;茶汤和茶叶中镉致癌健康年风险分别为6.33×10-7和4.42×10-6,比国际辐射防护委员会推荐的化学有害物最大可接受水平(5×10-5)低约1~2个数量级,说明可以安全饮用。

本文引用格式

王峰 , 单睿阳 , 陈玉真 , 林栋良 , 臧春荣 , 陈常颂 , 尤志明 , 余文权 . 闽中某县茶园土壤-茶树-茶汤中镉含量及健康风险评价研究[J]. 茶叶科学, 2018 , 38(5) : 537 -546 . DOI: 10.13305/j.cnki.jts.2018.05.011

Abstract

Extensive soil and tea tree samples were collected from 8 tea gardens in central Fujian Province to assess the cadmium (Cd) distributions and explore the Cd transportation from tea garden soil, tea leaf to tea soups. Their relations with soil physical and chemical properties were also discussed, and the preliminary health risk assessments of the Cd in tea were conducted using the USEPA health risk assessment model. The results showed that the average total soil Cd content was 112.74βμg·kg-1, which was 2.06 times higher than the background value in Fujian. The average available soil Cd content and available rate were 26.44βμg·kg-1 and 24.86%. The total and available soil Cd contents had significant but negative correlations with soil organic matter and pH value, and the available soil Cd rate was positively and significantly correlated with total and available soil phosphorus. The Cd contents of the main and secondary roots had a positive and significant correlation with the total and available Cd as well as soil organic matter. The Cd content in new leaves had a positive and significant correlation with soil available Cd and total phosphorus. The Cd distribution in tea plant followed the order as: lateral roots (1β253.89βμg·kg-1) > main roots (382.20βμg·kg-1) > main stem (167.25βμg·kg-1) ≈secondary stem (154.65βμg·kg-1) >older leaves (30.60βμg·kg-1) ≈ new leaves (27.13βμg·kg-1). The enrichment coefficients in roots were significantly higher than other tissues, suggesting the preferential accumulation of Cd in tea roots. The average Cd content in tea soup was 192.28βng·L-1, which was far below the sanitary standard for drinking water (GB 5749—2006). The dissolution ratio of Cd was 15.29%. Health risk assessment results of the tea soup and dry tea indicated that Cd of personal total annual risk of approximately 6.33×10-7 and 4.42×10-6, which were one or two order of magnitude lower than the threshold recommended by ICRP (1.0×10-5). Thus, these tea would be safe to drink.

参考文献

[1] Schutte R, Nawrot T S, Richart T, et al.Bone resorption and environmental exposure to cadmium in women: A population study[J]. Environmental Health Perspectives, 2008, 116(6): 777-783.
[2] Nordberg G, Jin T, Bernard A, et al.Low bone density and renal dysfunction following environmental cadmium exposure in China[J]. Ambio, 2002, 31(6): 478-481.
[3] Muhammad S, Joris P, Vincent H, et al. Bone resorption and environmental exposure to cadmium in children: A cross-sectional study [J]. Environmental Health, 2011, 10(1): 104. https://doi.org/10.1186/1476-069X-10-104.
[4] 郭海彦, 周卫军, 张杨珠, 等. 长沙“百里茶廊”茶园土壤重金属含量及环境质量特征[J]. 环境科学, 2008, 29(8): 2320-2326.
[5] 郭雅玲, 王果, 罗丹, 等. 福建铁观音茶园土壤中铅、镉、砷、铬、汞、铜、氟的环境质量现状分析[J]. 中国生态农业学报, 2011, 19(3): 676-681.
[6] Zhang M K, Fang L P.Tea plantation-induced activation of soil heavy metals[J]. Communications in Soil Science Plant Analysis, 2007, 38(11/12): 1467-1478.
[7] 张清海, 龙章波, 林绍霞, 等. 贵州云雾茶园土壤高含量重金属和砷在茶叶中的积累与浸出特征[J]. 食品科学, 2013, 34(8): 212-215.
[8] 叶宏萌, 李国平, 郑茂钟, 等. 武夷山茶园土壤重金属环境风险等级评价及溯源分析[J]. 福建农业学报, 2016, 31(4): 395-400.
[9] 王春梅, 唐茜, 张小琴, 等. 高浓度镉胁迫对茶树生理及吸收积累特性的影响[J]. 茶叶科学, 2012, 32(2): 107-114.
[10] 兰海霞, 夏建国. 川西蒙山茶树中铅、镉元素的吸收累积特性[J]. 农业环境科学学报, 2008, 27(3): 1077-1083.
[11] 石元值, 阮建云, 马立峰, 等. 茶树中镉、砷元素的吸收累积特性[J]. 生态与农村环境学报, 2006, 22(3): 70-75.
[12] 李张伟. 粤东凤凰山茶区土壤镉赋存形态特征及茶叶有效性[J]. 水土保持通报, 2013, 33(4): 237-241.
[13] 李丹, 高阳俊, 耿春女. 食物链途径人体健康风险评估的关键内容探讨[J]. 环境化学, 2015(3): 431-441.
[14] Cao H, Qiao L, Zhang H, et al.Exposure and risk assessment for aluminium and heavy metals in Puerh tea[J]. Science of the Total Environment, 2010, 408(14): 2777-2784.
[15] 贾振亚. 苦丁茶树土壤镉的生物可给性及茶叶镉暴露的健康风险研究[D]. 海口: 海南大学, 2011: 46-47.
[16] 方凤满, 王翔, 林跃胜. 皖南典型茶园茶叶中金属元素富集规律及其健康风险研究[J]. 水土保持学报, 2015, 29(4): 229-235.
[17] 农业部种植业管理司. 2014年全国茶园面积、产量、产值统计[J]. 茶叶科学, 2015, 35(5): 396.
[18] 安婧, 宫晓双, 陈宏伟, 等. 沈抚灌区农田土壤重金属污染时空变化特征及生态健康风险评价[J]. 农业环境科学学报, 2016, 35(1): 37-44.
[19] Molina M, Escudey M, Chang A C, et al.Trace element uptake dynamics for maize (Zea mays, L.) grown under field conditions[J]. Plant & Soil, 2013, 370(1/2): 471-483.
[20] USEPA. lntegrated risk information system [R/OL].[2018-04-14]. https://www.epa.gov/iris/index.html.
[21] 黄楚珊, 胡国成, 陈棉彪, 等. 矿区家庭谷物和豆类重金属含量特征及风险评价[J]. 中国环境科学, 2017, 37(3): 1171-1178.
[22] 陈振金, 陈春秀, 刘用清, 等. 福建省土壤环境背景值研究[J]. 环境科学, 1992, 13(4): 70-75.
[23] 中华人民共和国农业部. NY/T 853—2004 茶叶产地环境技术条件[S]. 2004.
[24] 中华人民共和国卫生部, 中国国家标准化管理委员会. GB 5749—2006 生活饮用水卫生标准[S]. 北京: 中华人民共和国卫生部, 2006.
[25] Wrixon A D.New ICRP recommendations[J]. Journal of Radiological Protection, 2008, 28(2): 161-168.
[26] 董立宽, 方斌. 茶园土壤重金属乡镇尺度下空间异质性分析-以江浙优质名茶种植园为例[J]. 地理研究, 2017, 36(2): 391-404.
[27] 向永生, 张军强, 李明伟, 等. 恩施州茶园土壤镉含量及其对茶叶质量安全的影响[J]. 湖北农业科学, 2010, 49(7): 1602-1604.
[28] 叶宏萌, 李国平, 郑茂钟, 等. 武夷山茶园土壤中五种重金属的化学形态和生物有效性[J]. 环境化学, 2016, 35(10): 2071-2078.
[29] 陈玉真, 王峰, 吴志丹, 等. 武夷山市5种类型茶园土壤重金属剖面分布特征[J]. 茶叶学报, 2015(3): 159-164.
[30] Borah K K, Bhuyan B, Sarma H P.Heavy metal contamination of groundwater in the tea garden belt of Darrang district, Assam, India[J]. Journal of Chemistry, 2009, 6(S1): 501-507.
[31] 章明奎, 黄昌勇. 公路附近茶园土壤中铅和镉的化学形态[J]. 茶叶科学, 2004, 24(2): 109-114.
[32] 李灵, 张洪江, 张玉, 等. 岩茶种类和种植年限对茶园土壤中、微量元素含量分异特征的影响[J]. 扬州大学学报(农业与生命科学版), 2010, 31(2): 53-58.
[33] 田效琴, 李卓, 刘永红. 成都平原农田镉污染情况及油菜镉吸收特征[J]. 农业环境科学学报, 2017, 36(3): 496-506.
[34] Harter R D, Naidu R.Role of Metal-organic complexation in metal sorption by soils[J]. Advances in Agronomy, 1995, 55(8): 219-263.
[35] Römkens M, Helming K, Prasad S N.Soil erosion under different rainfall intensities, surface roughness, and soil water regimes[J]. Catena, 2002, 46(2): 103-123.
[36] 陈苗苗, 徐明岗, 周世伟, 等. 不同磷酸盐对污染土壤中镉生物有效性的影响[J]. 农业环境科学学报, 2011, 30(2): 255-262.
[37] 聂艳丽, 郑毅, 林克惠. 根分泌物对土壤中磷活化的影响[J]. 云南农业大学学报, 2002, 17(3): 281-286.
[38] Hong C O, Lee D K, Kim P J.Feasibility of phosphate fertilizer to immobilize cadmium in a field[J]. Chemosphere, 2008, 70(11): 2009-2015.
[39] 王朋超, 孙约兵, 徐应明, 等. 施用磷肥对南方酸性红壤镉生物有效性及土壤酶活性影响[J]. 环境化学, 2016, 35(1): 150-158.
[40] 黄青青, 刘星, 张倩, 等. 磷肥中镉的环境风险及生物有效性分析[J]. 环境科学与技术, 2016, 39(2): 156-161.
[41] 张水勤, 王峰源, 姜慧敏, 等. 设施菜地土壤中速效磷是镉生物有效性的关键调控因子[J]. 农业环境科学学报, 2014, 33(9): 1721-1727.
[42] 吴良, 罗盛旭, 杜兵兵, 等. 土壤-苦丁茶树系统中Cu的分布及迁移富集规律[J]. 生态环境学报, 2010, 19(3): 590-593.
文章导航

/