欢迎访问《茶叶科学》,今天是

茶树CsSnRK2.1CsSnRK2.2基因的克隆及在非生物胁迫中的响应

  • 张永恒 ,
  • 万思卿 ,
  • 陈江飞 ,
  • 王伟东 ,
  • 周天山 ,
  • 肖斌 ,
  • 杨亚军 ,
  • 余有本
展开
  • 1. 西北农林科技大学园艺学院,陕西 杨凌 712100;
    2. 中国农业科学院茶叶研究所/国家茶树改良中心/农业部茶树生物学与资源利用重点实验室,浙江 杭州 310008
张永恒,男,硕士研究生,主要从事茶树分子育种研究。

收稿日期: 2017-06-05

  修回日期: 2017-08-01

  网络出版日期: 2019-08-28

基金资助

国家茶叶产业技术体系、汉中综合试验站(CARS-23)、陕西省农业专项资金项目(tg2015-099)、中国博士后科学基金面上项目(2016M602873)

Cloning and Expression Analysis of CsSnRK2.1 and CsSnRK2.2 Genes in Tea Plant (Camellia sinensis) under Abiotic Stress

  • ZHANG Yongheng ,
  • WANG Siqing ,
  • CHEN Jiangfei ,
  • WANG Weidong ,
  • ZHOU Tianshan ,
  • XIAO Bin ,
  • YANG Yajun ,
  • YU Youben
Expand
  • 1. College of Horticulture, Northwest A&F University, Yangling 712100, China;
    2. Tea Research Institute of Chinese Academy, Agricultural Sciences/National Center for Tea Improvement / Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China

Received date: 2017-06-05

  Revised date: 2017-08-01

  Online published: 2019-08-28

摘要

蔗糖非酵解型蛋白激酶(SnRK)是一类广泛存在于植物体内的丝氨酸/苏氨酸类蛋白激酶,其中SnRK2家族在植物非生物胁迫响应过程中起着十分重要的作用。为了探究茶树SnRK2家族基因响应逆境的分子机制,本研究克隆了两个茶树SnRK2家族基因,并分别命名为CsSnRK2.1(GenBank登录号:MG026837)和CsSnRK2.2(GenBank登录号:MF662805),生物信息学分析表明CsSnRK2.1CsSnRK2.2分别编码358个和337个氨基酸,与拟南芥和玉米SnRK2蛋白激酶的同源性很高,均具有保守的ATP结合位点和Ser/Thr激酶活性结构域。在高盐、干旱和ABA胁迫下,CsSnRK2.1均能被诱导表达,且呈现先升后降趋势,而在低温和高温胁迫下表达量变化不大;CsSnRK2.2能强烈响应高盐胁迫,也能被高温诱导上调表达;表明它们可能与茶树抗逆密切相关。

本文引用格式

张永恒 , 万思卿 , 陈江飞 , 王伟东 , 周天山 , 肖斌 , 杨亚军 , 余有本 . 茶树CsSnRK2.1CsSnRK2.2基因的克隆及在非生物胁迫中的响应[J]. 茶叶科学, 2018 , 38(2) : 183 -192 . DOI: 10.13305/j.cnki.jts.2018.02.009

Abstract

Sucrose non-fermenting-1-related protein kinase (SnRK) is a kind of serine/threonine protein kinases widely exist in plants. Among them, members of SnRK2 family play a vital role in plant response to stresses. In order to investigate the molecular mechanisms of Camellia sinensis SnRK2 in response to abiotic stresses, two SnRK2 genes from tea plant were cloned and named as CsSnRK2.1 (GenBank accession code: MG026837) and CsSnRK2.2 (GenBank accession code: MF662805) respectively. Bioinformatics analysis showed that they contained 358 and 337 amino acids respectively, which harbored a conserved ATP binding site and Ser/Thr kinase domain and were highly similar to SnRK2 protein kinase of Arabidopsis thaliana and maize. The expression of CsSnRK2.1 was transiently induced and then decreased by high salinity (100βmmol·L-1 NaCl), drought (20% PEG6000) and ABA(100βμmol·L-1) stress, but showed no significant changes under low (4℃) or high temperature treatments (38℃). By contrast, CsSnRK2.2 was strongly induced by high salt and temperature treatments. The results revealed that CsSnRK2.1 and CsSnRK2.2 might be closely related to stress responses in tea plant.

参考文献

[1] Hrabak E M, Chan C W, Gribskov M, et al.The Arabidopsis CDPK-SnRK superfamily of protein kinases[J]. Plant Physiology, 2003, 132(2): 666-680.
[2] Harmon A C.Calcium-regulated protein kinases of plant[J]. Gravitational & Space Biology Bulletin Publication of the American Society for Gravitational & Space Biology, 2003, 16(2): 83-90.
[3] Ying S, Zhang D F, Li H Y, et al.Cloning and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis[J]. Plant Cell Reports, 2011, 30(9): 1683-1699.
[4] Zhang H, Jia H, Liu G, et al.Cloning and characterization of NtSnRK2.7 and NtSnRK2.8 genes involved in abiotic stress responses from Nicotiana tabacum[J]. Acta Physiologiae Plantarum, 2014, 36(7): 1673-1682.
[5] Du X, Zhao X, Li X, et al.Overexpression of TaSRK2C1, a wheat SNF1-related protein kinase 2 gene, increases tolerance to dehydration, salt, and low temperature in transgenic tobacco[J]. Plant Molecular Biology Reporter, 2013, 31(4): 810-821.
[6] Liu J Y, Chen N N, Cheng Z M, et al.Genome-wide identification, annotation and expression profile analysis of SnRK2 gene family in grapevine[J]. Australian Journal of Grape and Wine Research, 2016, 22(3): 478-488.
[7] Yu X, Takebayashi A, Demura T, et al.Differential expression of poplar sucrose nonfermenting1-related protein kinase 2 genes in response to abiotic stress and abscisic acid[J]. Journal of Plant Research, 2017, 130(5): 920-940.
[8] Kulik A, Wawer I, Krzywinska E, et al.SnRK2 protein kinases—key regulators of plant response to abiotic stresses[J]. Omics A Journal of Integrative Biology, 2011, 15(12): 859-872.
[9] Phan T T, Sun B, Niu J Q, et al.Overexpression of sugarcane gene SoSnRK2.1 confers drought tolerance in transgenic tobacco[J]. Plant Cell Reports, 2016, 35(9): 1891-1905.
[10] Song X, Yu X, Hori C, et al.Heterologous overexpression of poplar SnRK2 genes enhanced salt stress tolerance in Arabidopsis thaliana[J]. Frontiers in Plant Science, 2016, 7. doi:10.3389/fpls.2016.00612.
[11] Tian S, Mao X, Zhang H, et al.Cloning and characterization of TaSnRK2.3, a novel SnRK2 gene in common wheat[J]. Journal of Biological Chemistry, 2013, 64(7): 2063-2080.
[12] Yoshida T, Mogami J, Yamaguchi-Shinozaki K.ABA-dependent and ABA-independent signaling in response to osmotic stress in plants[J]. Current Opinion in Plant Biology, 2014, 21(21C): 133-139.
[13] Zhang H, Mao X, Jing R, et al.Characterization of a common wheat (Triticum aestivum L.) TaSnRK2.7 gene involved in abiotic stress responses[J]. Journal of Experimental Botany, 2011, 62(3): 975-988.
[14] Yoshida R, Umezawa T, Mizoguchi T, et al.The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis[J]. Journal of Biological Chemistry, 2006, 281(8): 5310-5318.
[15] Kobayashi Y, Yamamoto S, et al.Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid[J]. Plant Cell, 2004, 16(5): 1163-1177.
[16] Park S Y, Fung P, Nishimura N, et al.Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins[J]. Science, 2009, 324(5930): 1068-1071.
[17] Santiago J, Dupeux F, Betz K, et al.Structural insights into PYR/PYL/RCAR ABA receptors and PP2Cs[J]. Plant Science, 2012, 182(1): 3-11.
[18] 罗列万. 2013年浙江省夏季茶园高温干旱受灾情况调查评估[J]. 中国茶叶, 2013, 35(9): 17-17.
[19] 郭俊红, 王伟东, 谷星, 等. 茶树WRKY转录因子基因CsWRKY57的克隆及表达分析[J]. 茶叶科学, 2017, 37(4): 411-419.
[20] Hao X, Horvath D P, Chao W S, et al.Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze)[J]. International Journal of Molecular Sciences, 2014, 15(12): 22155-22172.
[21] Lou D, Wang H, Liang G, et al.OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice[J]. Frontiers in Plant Science, 2017. https://doi.org/10.3389/ fpls.2017.00993.
[22] Ng L M, Soon F F, Zhou X E, et al.Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(52): 21259-21264.
[23] Vlad F, Droillard M J, Valot B, et al.Phospho-site mapping, genetic and in planta activation studies reveal key aspects of the different phosphorylation mechanisms involved in activation of SnRK2s[J]. Plant J, 2010, 63(5): 778-790.
[24] Zhang H, Jia H, Liu G, et al.Cloning and characterization of SnRK2 subfamily II genes from Nicotiana tabacum[J]. Mol Biol Rep, 2014, 41(9): 5701-5709.
[25] Bai J, Mao J, Yang H, et al.Sucrose non-ferment 1 related protein kinase 2 (SnRK2) genes could mediate the stress responses in potato (Solanum tuberosum L.)[J]. BMC Genet, 2017, 18(1): 41. DOI: https://doi.org/10.1186/s12863-017-0506-6.
[26] Liu Z, Ge X, Yang Z, et al. Genome-wide identification and characterization of SnRK2 gene family in cotton (Gossypium hirsutum L.) [J]. BMC Genet, 2017, 18(1): 54. https://doi.org/10.1186/s12863-017-0517-3.
[27] McLoughlin F, Galvan-Ampudia C S, Julkowska M M, et al. The Snf1-related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress[J]. The Plant Journal, 2012, 72(3): 436-449.
[28] Zhang H, Li W, Mao X, et al.Differential activation of the wheat SnRK2 family by abiotic stresses[J]. Frontiers in Plant Science, 2016, 7(106): 420. doi: 10.3389/fpls.2016.00420.
[29] Wang L, Hu W, Sun J, et al.Genome-wide analysis of SnRK gene family in Brachypodium distachyon and functional characterization of BdSnRK2.9[J]. Plant Science, 2015, 237: 33-45.
[30] Mao X, Zhang H, Tian S, et al.TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis[J]. Journal of Experimental Botany, 2010, 61(3): 683-696.
[31] Huai J, Wang M, He J, et al.Cloning and characterization of the SnRK2 gene family from Zea mays[J]. Plant Cell Rep, 2008, 27(12): 1861-1868.
[32] Boudsocq M, Barbier-Brygoo H, Lauriere C.Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana[J]. Journal of Biological Chemistry, 2004, 279(40): 41758-41766.
文章导航

/