欢迎访问《茶叶科学》,今天是

茶梗固态生料发酵产单宁酶研究

  • 吴昌正 ,
  • 蔡慧农 ,
  • 倪辉 ,
  • 朱艳冰 ,
  • 杨远帆 ,
  • 肖安风
展开
  • 1. 集美大学生物工程学院,福建 厦门 361021;
    2. 厦门市食品与生物工程技术研究中心,福建 厦门 361021;
    3. 福建省食品微生物与酶工程重点实验室,福建 厦门 361021;
    4. 福建省高校食品微生物与酶工程技术研究中心,福建 厦门 361021
吴昌正(1986— ),男,贵州铜仁人,硕士研究生,主要从事食品微生物研究。

收稿日期: 2013-05-23

  修回日期: 2013-07-31

  网络出版日期: 2019-09-03

基金资助

集美大学科研创新团队基金(2010A006)、李尚大基金项目(ZC2011014)资助

Tannase Production from Tea Stalks under Non-heat-treated Solid State Fermentation

  • WU Changzheng ,
  • CAI Huinong ,
  • NI Hui ,
  • ZHU Yanbing ,
  • YANG Yuanfan ,
  • XIAO Anfeng
Expand
  • 1. College of Bioengineering, Jimei University, Xiamen 361021, China;
    2. Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China;
    3. Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China;
    4. Research Center of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen 361021, China

Received date: 2013-05-23

  Revised date: 2013-07-31

  Online published: 2019-09-03

摘要

为促进茶梗的高效利用,对黑曲霉利用茶梗固态生料发酵生产单宁酶进行初步研究。结果表明:生料发酵产酶量是熟料发酵方式的3.2倍;茶梗中外加单宁酸对产酶没有明显影响,同时添加无机盐和碳氮源对产酶具有协同效应;蔗糖为产酶最佳碳源,但在产酶初期会对单宁酶的合成产生一定的抑制作用;氯化铵为产酶最佳氮源,在培养基中添加氯化铵既可提前单宁酶合成的时间,又可显著提高酶产量。添加质量分数为7%的蔗糖和氯化铵获得最高酶产量23.6 U·g-1。试验结果为茶梗固态生料发酵产单宁酶奠定了一定的理论基础,并有助于促进对茶梗的规模化开发和利用。

本文引用格式

吴昌正 , 蔡慧农 , 倪辉 , 朱艳冰 , 杨远帆 , 肖安风 . 茶梗固态生料发酵产单宁酶研究[J]. 茶叶科学, 2014 , 34(1) : 79 -86 . DOI: 10.13305/j.cnki.jts.2014.01.010

Abstract

The tannase production from Aspergillus niger by non-heat-treated solid state fermentation were investigated using tea stalks as substrate. The results showed that non-heat-treated solid state fermentation stimulated the production of tannase by 3.2-fold, when compared to that of heat-treated group. Supplementation with tannic acid was confirmed to have no influence on tannase production. Meanwhile, additional inorganic salts, carbon and nitrogen sources showed synergistic effect on tannase formation. Sucrose supplementation obtained maximum tannase yield, but the enzyme productivity in the initial stage of fermentation was decreased. Additional ammonium chloride played an important role in tannase synthesis process. It not only increased tannase production, but also shortened the fermentation period observably. Moreover, being supplemented with 7% sucrose and ammonium chloride obtained highest tannase production (23.6 U·g-1). These results demonstrated that using tea stalks as substrate to produce tannase by non-heat-treated solid state fermentation is a good choice, which can provide the theory basis for further study of tannase production. Meanwhile, it will help to promote the large-scale exploitation of tea stalks and to increase the economic value of this agro-residue.

参考文献

[1] 农业部种植业管理司. 2012年全国茶园面积、产量、产值统计[J]. 茶叶科学,2012, 33(3): 267.
[2] 叶俭慧, 梁月荣, 梁慧玲, 等. 茶梗木质纤维素对儿茶素类吸附动力学研究[J]. 茶叶科学,2008, 28(5): 313-318.
[3] 徐建荣, 李桂珍, 龚安达, 等. 铁观音茶梗颗粒在卷烟滤嘴中的应用初探[J]. 应用化工, 2011, 40(7): 1232-1234.
[4] 杜冰, 陈悦娇, 李燕杰, 等. 挤压膨化对铁观音茶梗滋味和香气成分的影响[J]. 农业工程学报, 2010, 26(9): 381-384.
[5] Belmaresa R, Contreras-Esquivela J C, Rodríguez-Herrera R, et al. Microbial production of tannase: an enzyme with potential use in food industry[J]. Lebensm.-Wiss. u.-Technol, 2004, 37(8): 857-864.
[6] Battestin V, Macedo G A, Freitas V A P D. Hydrolysis of epigallocatechin gallate using a tannase from Paecilomyces variotii[J]. Food Chemistry, 2008, 108(1): 228-233.
[7] Lu M J, Chen C.Enzymatic modification by tannase increases the antioxidant activity of green tea[J]. Food Research International, 2008, 41(2): 130-137.
[8] Macedo J A, Ferreira L R, Camara L E, et al. Chemopreventive potential of the tannase-mediated biotransformation of green tea[J]. Food Chemistry, 2012, 133(2): 358-365.
[9] Sabu A, Pandey A, Jaafar M, et al. Tamarind seed powder and palm kernel cake: two novel agro residues for the production of tannase under solid state fermentation by Aspergillus niger ATCC 16620[J]. Bioresource Technology, 2005, 96(11): 1223-1228.
[10] Kar B, Banerjee R.Biosynthesis of tannin acyl hydrolase from tannin-rich forest residue under different fermentation conditions[J]. Journal of Industrial Microbiology and Biotechnology, 2000, 25(1): 29-38.
[11] 李秧针, 邱树毅, 保玉心, 等. 黑曲霉B0201利用五倍子固体发酵产单宁酶的条件研究[J]. 微生物学通报, 2009, 36(8): 1123-1129.
[12] Wang F, Ni H, Cai H N, et al. Tea stalks - a novel agro-residue for the production of tannase under solid state fermentation by Aspergillus niger JMU-TS528[J]. Annals of Microbiology, DOI 10.1007/s13213- 012-0541-5.
[13] 贠建民, 刘陇生, 安志刚, 等. 马铃薯淀粉渣生料多菌种固态发酵生产蛋白饲料工艺[J]. 农业工程学报, 2010, 26(2): 399-404.
[14] 许宏贤, 段钢. 固态间歇补料乙醇生料发酵新工艺[J]. 生物工程学报, 2009, 25(2): 200-206.
[15] 胡海宾, 黄环宇, 刘学文, 等. 生料固态发酵制醋新工艺的研究[J]. 食品研究与开发, 2008, 29(2): 85-87.
[16] 熊智强, 涂晓嵘, 涂国全. 红谷霉素生料发酵工艺的研究[J]. 中国生物工程杂志, 2008, 28(1): 76-79.
[17] Sharma S, Bhat T, Dawra R.A spectrophotometric method for assay of tannase using rhodanine[J]. Analytical Biochemistry, 2000, 279(1): 85-89.
[18] Rodrigues T H S, Pinto G A S, Gonçalves L R B. Effects of inoculum concentration, temperature, and carbon sources on tannase production during solid state fermentation of Cashew Apple Bagasse[J]. Biotechnology and Bioprocess Engineering, 2008, 13(5): 571-576.
[19] 保玉心. 固体发酵黑曲霉产单宁酶的研究[D]. 贵阳: 贵州大学, 2008: 33-34.
[20] Rodrigues T H S, Dantas M A A, Pinto G A S, et al. Tannase production by solid state fermentation of Cashew Apple Bagasse[C]. Applied Biochemistry and Biotecnology ABAB Symposium, 2007: 675-688.
文章导航

/