欢迎访问《茶叶科学》,今天是

SNaPshot技术检测茶树SNP研究

  • 张成才 ,
  • 谭礼强 ,
  • 王丽鸳 ,
  • 韦康 ,
  • 成浩
展开
  • 1. 中国农业科学院茶叶研究所,国家茶树改良中心, 浙江 杭州 310008;
    2. 四川农业大学园艺学院,四川 雅安 614025
张成才(1986— ),男,山东青岛人,硕士研究生,主要从事茶树分子生物学研究。

收稿日期: 2013-07-01

  修回日期: 2013-08-12

  网络出版日期: 2019-09-03

基金资助

现代农业产业技术体系建设专项(No. nycytx-23)、浙江省自然科学基金(X307603)、浙江省茶产业技术创新战略联盟专项

Study of SNaPshot Detect SNP Markers in Tea Plant

  • ZHANG Chengcai ,
  • TAN Liqiang ,
  • WANG Liyuan ,
  • WEI Kang ,
  • CHENG Hao
Expand
  • 1. Tea Research Institute, Chinese Academy of Agriculture Science, National Center for Tea Improvement, Hangzhou 310008, China;
    2. College of Horticulture, Sichuan Agricultural University, Yaan 614025, China

Received date: 2013-07-01

  Revised date: 2013-08-12

  Online published: 2019-09-03

摘要

为了提高茶树SNPs分型效率,促进SNPs在茶树遗传育种中的应用,研究了SNaPshot技术进行茶树SNPs分型的可行性。从实验室前期确证的SNPs中,选择10个作为目标SNPs;使用SNaPshot技术在不同的茶树品种中进行分型;然后,对分型结果进行比对和统计,以验证SNaPshot技术检测茶树SNPs的准确性、重复性以及在茶树遗传多样性分析等方面的可用性。结果发现,6个SNPs分型结果与测序结果一致,准确率为60%;目标SNPs在龙井43及其重复实验中的分型结果完全一致;6个SNPs的等位基因数都是2,期望杂合度(He)介于0.37~0.52,观测杂合度(Ho)介于0.32~0.74,多态性信息含量(PIC)介于0.36~0.50;结果表明,SNaPshot技术对茶树SNPs的分型准确性高、重复性好,可以用于茶树遗传多样性分析以及茶树遗传图谱构建等方面的研究。

本文引用格式

张成才 , 谭礼强 , 王丽鸳 , 韦康 , 成浩 . SNaPshot技术检测茶树SNP研究[J]. 茶叶科学, 2014 , 34(2) : 180 -187 . DOI: 10.13305/j.cnki.jts.2014.02.014

Abstract

In order to increase the genotyping efficiency of tea SNPs and promote the application of SNPs in tea genetic breeding investigation, the feasibility of SNaPshot in SNPs genotyping of tea plant was investigated. Ten SNPs were selected from previous experiment as target SNPs. Then, these SNPs were detected in different tea cultivars by SNaPshot technology. Six among 10 SNPs were successful detected, with an accuracy of 60%. The polymorphism diversity of these SNPs was also analyzed. The value of NA was 2, He ranged from 0.37 to 0.52, Ho ranged from 0.32 to 0.74, PIC ranged from 0.36 to 0.50. All these markers were shown coincide between `Longjing43` and its repeated test. The markers reported here will be useful for tea genetic linkage map construction and genetic diversity study. The SNaPshot technology will promote the genetic study and accelerate the breeding process in tea plant.

参考文献

[1] Gupta P K, Roy J K, Prasad M.Single nucleotide polymorphisms (SNPs): a new paradigm in molecular marker technology and DNA polymorphism detection with emphasis on their use in plants[J]. Curr Sci India, 2001, 80(4): 524-535.
[2] Schlötterer C.The evolution of molecular markers—just a matter of fashion?[J] Nat Rev Genet, 2004, 5(1): 63-69.
[3] Hyten D L, Choi I Y, Song Q J, et al. A High Density Integrated Genetic Linkage Map of Soybean and the Development of a 1536 Universal Soy Linkage Panel for Quantitative Trait Locus Mapping[J]. Crop Sci, 2010, 50(3): 960-968.
[4] Delourme R, Falentin C, Fomeju B F, et al. High-density SNP-based genetic map development and linkage disequilibrium assessment in Brassica napus L[J]. BMC Genomics, 2013, 14: 120.
[5] Kuhn D N, Livingstone III D, Main D, et al. Identification and mapping of conserved ortholog set (COS) II sequences of cacao and their conversion to SNP markers for marker-assisted selection in Theobroma cacao and comparative genomics studies[J]. Tree Genet Genomes, 2012, 8(1): 97-111.
[6] Dai F, Nevo E, Wu DZ, et al. Tibet is one of the centers of domestication of cultivated barley[J]. PNAS, 2012, 109(42): 16969-16973.
[7] Sobrino B, Brion M, Carracedo A.SNPs in forensic genetics: a review on SNP typing methodologies[J]. Forensic Sci Int, 2005, 154(2/3): 181-194.
[8] 赵春霞, 石先哲, 张岩, 等. 一种同时检测多个单核苷酸多态性位点的新方法[J]. 分析化学, 2003, 31(8): 906-910.
[9] 胡抗, 袁东亚, 贺学, 等. 分子人类学中的单核苷酸突变检测方法的研究进展[J]. 生命科学, 2013, 25(1): 119-125.
[10] 叶荣菊, 黄志刚, 王讳, 等. SNaPshot技术对萎缩性胃炎IL-1B-1473单核苷酸多态性的检测[J]. 世界华人消化杂志, 2009, 17(12): 1202-1206.
[11] 刘小琦. 采用SNaPshot方法对中国老年黄斑变性与C2和C3基因单核苷酸多态性进行相关性研究[J]. 国际检验医学杂志, 2013, 34(3): 285-290.
[12] 孙亚男, 李安, 史斌. SNaPshot技术检测Y-SNP位点O3-M122单倍群的应用[J]. 中国法医学杂志, 2013, 28(1): 1-4.
[13] Torjek O, Berger D, Meyer RC, et al. Establishment of a high-efficiency SNP-based framework marker set for Arabidopsis[J]. Plant J. 2003, 36(1): 122-140.
[14] Deleu W, Esteras C, Roig C, et al. A set of EST-SNPs for map saturation and cultivar identification in melon[J]. BMC Plant Biol, 2009, 9: 90.
[15] 黄建安, 黄意欢, 罗军武. 茶树多酚氧化酶基因的SNP分析[J]. 湖南农业大学学报: 自然科学版, 2007, 33(4): 455-458.
[16] 王丽鸳, 张成才, 成浩. 茶树EST-SNP分布特征及标记开发[J]. 茶叶科学, 2012, 32(4): 369-376.
[17] 张成才,王丽鸳, 韦康. 基于茶树SNP的dCAPS标记体系研究[J]. 茶叶科学, 2012, 32(6): 517-522.
[18] 张成才. 茶树SNP标记的开发与应用[D]. 北京: 中国农业科学院, 2012.
[19] 刘本英, 王平盛, 周红杰, 等. 云南茶组植物ISSR-PCR反应体系的建立[J]. 云南农业大学学报, 2006, 21(增) : 21-25.
[20] Botstein D, White R L, Skolnick M.Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. Am J Hum Genet, 1980, 32: 314-331.
[21] Chen L, Zhou Z X, Yang Y J.Genetic improvement and breeding of tea plant (Camellia sinensis) in China: from individual selection to hybridization and molecular breeding[J]. Euphytica, 2007, 154: 239-248.
[22] 马建强, 姚明哲, 陈亮. 茶树遗传图谱研究进展[J]. 茶叶科学, 2010, 30(5): 329-335.
[23] Taniguchi F, Furukawa K, Ota-Metoku S.Construction of a high-density reference linkage map of tea (Camellia sinensis)[J]. Breeding Sci, 2012, 62: 263-273.
文章导航

/