叶绿体基因组在物种鉴定、系统进化分析及亲缘关系研究等领域应用前景广阔。本文应用Illumina高通量测序技术对龙井43(Camellia sinensis cv. Longjing 43)的叶绿体全基因组进行测序;利用叶绿体trnL-trnF序列研究茶树及其近缘植物的亲缘关系。结果表明,龙井43叶绿体基因组全长为157 096 bp,反向互补重复区(Inverted repeat, IR)为26 080 bp,小单拷贝区(Small single copy region, SSC)、大单拷贝区(Large single copy region, LSC)分别为18 283 bp、86 653 bp。共注释叶绿体基因133个,其中蛋白编码基因86个,rRNA基因8个,tRNA基因39个。对所选植物的trnL-trnF序列进行比对,序列长度变异范围为481~501 bp,序列最长为岔河大茶,最短为金花茶,基于此序列构建亲缘关系树,山茶属茶组植物聚成一个组。研究结果对茶树优良品种培育及山茶属植物亲缘关系的研究具有重要价值。
Chloroplast genome sequences have comprehensive application prospects in species identification, phylogeny analyses and transgenic breeding. The complete chloroplast genome of Camellia sinensis cv. Longjing 43 was sequenced using Illumina sequencing technology. The study of genetic relationship for tea plant and its closely related species based on chloroplast DNA sequences trnL-trnF. The results showed that the chloroplast genome of ‘Longjing 43’ was found to be 157 096 bp in length which included a pair of inverted repeats (IRs) of 26 080 bp, separated by a small singlecopy region of 18 283 bp and a large single-copy region (LSC) of 86 653 bp. A total of 133 predicted genes including 86 protein-coding genes, 8 ribosomal RNA genes and 39 tRNA genes were identified. Sequence alignment of trnL-trnF for Plants were selected, the sequence of trnL-trnF ranged from 481 bp to 501 bp in length, the longest length of trnL-trnF region was 501 bp in C. tachangensis, the shortest was 481 bp in C. nitidissima. Phylogenetic analysis showed that all of the Sect. Thea being organized in the same clade. The results will play an important role for tea breeding and phylogenetic relationship study of tea plant and other Camellia species.
[1] Shinozaki K, Ohme M, Tanaka M, et al. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression[J]. Embo Journal, 1986, 5(9): 2043-2049.
[2] Ohyama K, Fukuzawa H, Kohchi T, et al. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA[J]. Nature, 1986, 322(6079): 572-574.
[3] 张春, 凡星, 沙莉娜, 等. 基于叶绿体trnL-F序列对广义披碱草属物种的系统进化研究[J]. 草业学报, 2011(3): 162-173.
[4] 牟少华, 孙振元, 彭镇华. 基于叶绿体DNA trnL-F序列研究部分鸢尾属的亲缘关系[J]. 华北农学报, 2010, 25(5): 112-116.
[5] 庞磊, 魏磊, 杨旭, 等. 利用叶绿体DNA trnL-F序列探讨石蒜属种间关系[J]. 内蒙古农业大学学报: 自然科学版, 2012, Z1: 67-72.
[6] 陈春梅, 陈亮. 茶树叶绿体DNA提取方法研究[J]. 分子植物育种, 2014, 12(3): 562-566.
[7] 李西文, 高欢欢, 王一涛, 等. 荷花玉兰叶绿体全基因组高通量测序及结构解析[J]. 中国科学: 生命科学, 2012, 42(12): 947-956.
[8] Fukuzawa H, Kohchi T, Shirai H, et al. Coding sequences for chloroplast ribosomal protein S12 from the liverwort, Marchantia polymorpha, are separated far apart on the different DNA Strand[J]. FEBS Letters, 1986, 198: 11-15.
[9] Kim K J, Lee H L.Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants[J]. DNA Research, 2004, 11(4): 247-261.
[10] Kaundun S S, Matsumoto S.Molecular evidence for maternal inheritance of the chloroplast genome in tea, Camellia sinensis (L.) O. Kuntze[J]. Journal of the Science of Food and Agriculture, 2011, 91(14): 2660-2663.
[11] Leigh F J, Mackay I, Oliveira H R, et al. Using diversity of the chloroplast genome to examine evolutionary history of wheat species[J]. Genetic Resources and Crop Evolution, 2013, 60(6): 1831-1842.
[12] Flannery M L, Mitchell F J G, Coyne S, et al. Plastid genome characterisation in Brassica and Brassicaceae using a new set of nine SSRs[J]. Theor Appl Genet, 2006, 113(7): 1221-1231.
[13] Allender C J, Allainguillaume J, Lynn J, et al. Simple sequence repeats reveal uneven distribution of genetic diversity in chloroplast genomes of Brassica oleracea L. and (n=9) wild relatives[J]. Theor Appl Genet, 2007, 114(4): 609-618.
[14] 李健仔, 李思光, 罗玉萍, 等. 叶绿体DNA分析技术及其在植物系统学研究中的应用[J]. 江西科学, 2002(3): 183-189.
[15] Gielly L, Taberlet P.The use of chloroplast DNA to resolve plant phylogenies: noncoding versus rbcL sequences[J]. Molecular Biology and Evolution, 1994, 11(5): 769-777.
[16] Kelchner S A.The evolution of non-coding chloroplast DNA and its application in plant systematic[J]. Annals of the Missouri Botanical Garden, 2000, 87(4): 482-498.
[17] LÜ Fang, Wang Guangce.Sequence and phylogenetic analyses of the chloroplast 16S rRNA, tufA, and rbcL genes from Bryopsis hypnoides[J]. Chinese Journal of Oceanology and Limnology, 2011, 29(5): 922-929.
[18] Wang F Y, Gong X, Hu C M, et al. Phylogeography of an alpine species Primula secundiflora inferred from the chloroplast DNA sequence variation[J]. Journal of Systematics and Evolution, 2008, 46(1): 13-22.
[19] Liu Y, Yan H F, Cao T, et al. Evaluation of 10 plant barcodes in Bryophyta (Mosses)[J]. Journal of Systematics and Evolution, 2010, 48(1): 36-46.