简单序列重复(Simple sequence repeats, SSR)在茶树遗传与育种研究中具有重要的作用,基于4300 DNA分析系统的SSR发掘具有通量高、准确和灵敏等特点,已被用于许多物种的分子标记研究,但在茶树的相关研究中尚未见报道。本研究应用单因素试验和L9(34)正交设计试验对影响茶树SSR-PCR的主要参数进行优化,建立了适合于4300 DNA分析系统的茶树SSR-PCR反应体系:1.0 μL DNA(25 ng·μL-1),0.2 μL M13F-F、0.2 μL R和0.4 μL IR-M13F,0.8 μL dNTPs(25 mmol·L-1),1.0 μL 10×Buffer(含Mg2+),0.1 μL Ex-Taq聚合酶(5 U·μL-1),无菌水定容至10 μL。所有引物浓度均为1 μmol·L-1。同时,本研究还证明,可以以自行配制的6.5%聚丙烯酰胺凝胶溶液(acry:bis=29:1)替代4300 DNA分析系统指定凝胶溶液,检测SSR位点。
Simple sequence repeats (SSR) play an important role in genetic and breeding research for tea plant [Camellia sinensis (L.) O. Kuntze]. 4300 DNA Analysis System is high-throughput, accurate and sensitive in detecting the signals, it has been used in molecular markers techniques in many species, but its application in tea plant has not been reported up to now. In this study, the main parameters that affect tea SSR-PCR have been optimized and verified via single factor experiment and L9(34) orthogonal test. A suitable SSR-PCR reaction system of the 4300 DNA Analysis System for the tea plant genetic research was obtained: 1.0 μL DNA(25 ng·μL-1), 0.2 μL MF-F, 0.2 μL R and 0.40 μL IR-MF, 0.8 μL of dNTPs (25 mmol·L-1), 1.0 μL 10×Buffer (Mg2+), 0.1 μL Ex-Taq polymerase (5 U·μL-1), adding sterile water to a total volume of 10 μL. Concentration of all primers is 1 μmol·L-1. Besides, in this research, polyacrylamide gel solution (acry:bis is 29:1, concentration is 6.5%) self-made is detected to be alternative to the gel solution provided by 4300 DNA analysis system for detecting SSR loci.
[1] Tautz D.Hyper variability of simple sequences as a general source for polymorphic DNA markers[J]. Nucleic Acids Search, 1989, 17(16): 6463-6471.
[2] Litt M, Luty Ja.A hyper variable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle action gene[J]. American Journal of Human Genetics, 1989, 44(3): 397-401.
[3] 程本义, 夏俊辉, 龚俊义, 等. SSR荧光标记毛细管电泳检测法在水稻DNA指纹鉴定中的应用[J]. 中国水稻科学, 2011, 25(6): 672-676.
[4] 武玉国, 吴承来, 秦保平, 等. 黄淮冬麦区175个小麦品种的SSR多态性及其与株高、产量相关性状的关联分析[J]. 作物学报, 2012, 38(6): 1041-1028.
[5] Kaundun SS, Matsumoto S.Heterologous nuclear and chloroplast microsatellite amplification and variation in tea (Camellia sinensis)[J]. Genome, 2002, 45(6): 1041-1048.
[6] Freeman S, West J, James C, et al. Isolation and characterization of highly polymorphic microsatellites in tea(Camellia sinensis)[J]. Mol Ecol Notes, 2004, 4: 324-326.
[7] 金基强, 崔海瑞, 陈文岳, 等. 茶树EST-SSR的信息分析与标记建立[J]. 茶叶科学, 2006, 26(1): 17-23.
[8] Hung CY, Wang KH, Huang CC, et al. Isolation and characterization of 11 microsatellite loci from Camellia sinensis in Taiwan using PCR-based isolation of microsatellite arrays (PIMA)[J]. Conserv Genet, 2008, 9: 779-781.
[9] Zhao LP, Liu Z, Chen L, et al. Generation and characterization of 24 novel EST derived microsatellites from tea plant (Camellia sinensis) and cross-species amplification in its closely related species and varieties[J]. Conserv Genet, 2008, 9: 1327-1331.
[10] Sharma RK, Bhardwaj P, Negi R, et al. Identification, characterization and utilization of unigene derived microsatellite markers in tea (Camellia sinensis L.)[J]. BMC Plant Biology, 2009, 9: 53.
[11] Yao MZ, Ma CL, Qiao TT, et al. Diversity distribution and population structure of tea germplasms in China revealed by EST-SSR markers[J]. Tree Genetics & Genomes, 2011, 8(1): 205-220.
[12] Cubry P, Musoli P, Pot D, et al. Diversity in coffee assessed with SSR markers: structure of the genus Coffea and perspectives for breeding[J]. Genome, 2008, 51(1): 50-63.
[13] Liu L, Y Wu. Development of a genome-wide multiple duplex-SSR protocol and its applications for the identification of selfed progeny in switchgrass[J]. BMC Genomics, 2012, 13: 522.
[14] Wang YW, Samuels TD, Wu YQ.Development of 1030 genomic SSR markers in switchgrass[J]. Theor Appl Genets, 2011, 122: 677-686.
[15] Tan CC, Wu YQ, Charles M Taliaferro, et al. Development of simple sequence repeat markers for bermudagrass from its expressed sequence tag sequences and preexisting sorghum SSR markers[J]. Mol Breeding, 2012, 29(1): 23-30.
[16] Chen CX, Yu QY, Hou SB, et al. Construction of a sequence-tagged high-density genetic map of papaya for comparative structural and evolutionary genomics in brassicales[J]. Genetics, 2007, 177(4): 2481-2491.
[17] Gong L, Deng Z.EST-SSR markers for gerbera (Gerbera hybrida)[J]. Mol Breeding, 2010, 26(1): 125-132.
[18] 王磊, 陈琪, 杨华, 等. 适于SSR分析的茶树高质量基因组DNA提取方法[J]. 茶叶通报, 2013, 35(1): 21-24.
[19] Luu M Cuc, Emma S Mace, Rajeev K Varshney, et al. Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea)[J]. BMC Plant Biology, 2008, 8: 55.
[20] Schuelke M.An economic method for the fluorescent labeling of PCR fragments[J]. Nat Biotechnol, 2000, 18(2): 233-234.
[21] 王磊, 韦朝领, 宛晓春. 基于茶树基因组信息的SSR分子标记的筛选及其初步应用[D]. 合肥: 安徽农业大学, 2013: 32-35.
[22] Loridon K, Mcphee K, Morin J, et al. Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.)[J]. Theor Appl Genets, 2005, 111: 1022-1031.
[23] 藏威, 张兰兰, 张国民, 等. 稻瘟病菌SSR反应体系的优化[J]. 农业生物技术科学, 2007, 23(6): 174-178.
[24] 卢玉飞, 蒋建雄, 易自立. 中国芒属植物ISSR-PCR扩增反应体系的优化[J]. 草地学报, 2013, 21(1): 167-173.