欢迎访问《茶叶科学》,今天是

茉莉花茶主要品质成分定量近红外光谱分析模型的建立

  • 陈美丽 ,
  • 张俊 ,
  • 龚淑英 ,
  • 唐德松 ,
  • 张颖彬 ,
  • 顾志蕾
展开
  • 浙江大学茶叶研究所,浙江 杭州 310058
陈美丽(1987— ),女,湖南慈利人,硕士研究生,主要从事茶叶加工与审评方面的研究。

收稿日期: 2012-05-07

  修回日期: 2012-07-30

  网络出版日期: 2019-09-04

基金资助

国家茶叶产业技术体系经费资助(CARS-23)

Establishment of Predictive Model for Quantitative Analysis of Major Components in Jasmine Tea by Near Infrared Spectroscopy(NIRS)

  • CHEN Mei-li ,
  • ZHANG Jun ,
  • GONG Shu-ying ,
  • TANG De-song ,
  • ZHANG Ying-bin ,
  • GU Zhi-lei
Expand
  • Tea Research Institute, Zhejiang University, Hangzhou 310058, China

Received date: 2012-05-07

  Revised date: 2012-07-30

  Online published: 2019-09-04

摘要

选择有代表性的112个茉莉花茶茶样为实验材料,采用近红外光谱分析技术结合化学计量学方法对茶多酚总量(TP)、游离氨基酸总量(AA)、咖啡碱(CAFF)、水浸出物(water extract)、没食子酸(GA)、没食子儿茶素(GC)、表没食子儿茶素(EGC)、儿茶素(C)、表儿茶素(EC)、表没食子儿茶素没食子酸酯(EGCG)、没食子儿茶素没食子酸酯(GCG)、表儿茶素没食子酸酯(ECG)、儿茶素没食子酸酯(CG)这13种品质成分的含量建立定量分析模型。结果显示,除CG的模型综合评价指标Q值为0.7702以外,其余的Q值为0.8~0.9。经外部检验,CAFF和GCG的真实值与预测值的相关系数R为0.7~0.8,GC、EGCG、ECG、CG为0.8~0.9,其余均达0.9以上,模型效果较好,为简便快速地测定茉莉花茶品质成分的含量提供了新思路。

本文引用格式

陈美丽 , 张俊 , 龚淑英 , 唐德松 , 张颖彬 , 顾志蕾 . 茉莉花茶主要品质成分定量近红外光谱分析模型的建立[J]. 茶叶科学, 2013 , 33(1) : 21 -26 . DOI: 10.13305/j.cnki.jts.2013.01.002

Abstract

Taking 112 representative jasmine tea as research material, the quantitative calibration models for determining the contents of 13 chemical compositions such as total tea polyphenols (TP), free amino acids (AA), caffeine (CAFF), water extract, GA, GC, EGC, C, EC, EGCG, GCG, ECG, CG were established by NIRS combined with chemometrics. Q-value taking all important statistical values into account can evaluate the quality of models. Results showed that almost all the Q-value of models was 0.8~0.9, except for CG with a Q-value of 0.7702. Each of the 13 predictive models was applied for external inspection. Coefficients of correlation (R) between predicted value by NIR and the actual value were exceed 0.9, except CAFF and GCG was 0.7~0.8 and GC、EGCG、ECG、CG was 0.8~0.9. The established models present high stability and predictive accuracy. This paper provided a simple and convenient method for measuring the contents of major quality components in jasmine tea.

参考文献

[1] 王玉霞, 徐荣荣, 任广鑫, 等. 绿茶茶汤中主要品质成分近红外定量分析模型的建立[J]. 茶叶科学, 2011, 31(4): 355-361.
[2] 吴瑞梅, 赵杰文, 陈全胜, 等. 近红外光谱技术结合特征变量筛选快速检测绿茶滋味品质[J]. 光谱学与光谱分析, 2011, 31(7): 1782-1785.
[3] 林新, 牛智有, 刘梅英, 等. 近红外光谱法快速测定绿茶的4种主要成分[J]. 华中农业大学学报, 2009, 28(4): 487-490.
[4] 刘蕾, 罗文文, 龚淑英, 等. 采用近红外光谱技术定量分析绿茶中的主要呈味物质[J]. 中国食品学报, 2008, 8(6): 109-115.
[5] 罗一帆, 郭振飞, 朱振宇, 等. 近红外光谱测定茶叶中茶多酚和茶多糖的人工神经网络模型研究[J]. 光谱学与光谱分析, 2005, 25(8): 1230-1233.
[6] 芦永军, 陈华才, 吕进, 等. 茶多酚中总儿茶素的近红外光谱分析[J]. 分析化学研究简报, 2005, 33(6): 835-837.
[7] He Wei, Zhou Jian, Cheng Hao, et al. Validation of origins of tea samples using partial least squares analysis and Euclidean distance method with near-infrared spectroscopy data[J]. SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, 2012, 86: 399-404.
[8] 周健, 成浩, 曾建明, 等. 基于近红外的多相偏最小二乘模型组合分析实现茶叶原料品种鉴定与溯源的研究[J]. 光谱学与光谱分析, 2010(10): 2650-2653.
[9] 周健, 成浩, 王丽鸳, 等. 基于杠杆率校正的PLS-DA法对正半岩武夷岩茶的识别研究[J]. 茶叶科学, 2009, 29(1): 34-40.
[10] 廖步岩, 张正竹, 夏涛, 等. 近红外光谱分析技术在茶叶品质属性甄别中的应用[J]. 安徽农业大学学报, 2009, 36(2): 287-291.
[11] 李晓丽, 何勇, 裘正军. 一种基于可见-近红外光谱快速鉴别茶叶品种的新方法[J]. 光谱学与光谱分析, 2007, 27(2): 279-282.
[12] 赵杰文, 陈全胜, 张海东, 等. 近红外光谱分析技术在茶叶鉴别中的应用研究[J]. 光谱学与光谱分析, 2006, 26(9): 1601-1604.
[13] 陈全胜, 赵杰文, 张海东, 等. SIMCA模式识别方法在近红外光谱识别茶叶中的应用[J]. 食品科学, 2006, 27(4): 186-189.
[14] Liang Yuerong, Lu Jianliang, Zhang Lingyun, et al. Estimation of black tea quality by analysis of chemical composition and colour difference of tea infusions[J]. Food Chemistry, 2003, 80(2): 283-290.
[15] 陆婉珍. 现代近红外光谱分析技术[M]. 2版. 北京: 中国石化出版社, 2006.
[16] 褚小立, 袁洪福, 陆婉珍. 近红外分析中光谱预处理及波长选择方法进展与应用[J]. 化学进展, 2004, 16(4): 528-542.
[17] Champagne E T, Bett-Garber K L, Grimm CC, et al. Near-infrared reflectance analysis for prediction of cooked rice texture[J]. Cereal Chem, 2001, 78(3): 358-362.
[18] Dowell F E.Differentiating vitreous and nonvitreous durum wheat kernels by using near-infrared spectroscopy[J]. Cereal Chem, 2000, 77(2): 155-158.
文章导航

/