欢迎访问《茶叶科学》,今天是

温湿度变化对茶苗芽萌发基因表达的影响

  • 韦康 ,
  • 王丽鸳 ,
  • 成浩 ,
  • 龚武云 ,
  • 吴立赟
展开
  • 中国农业科学院茶叶研究所,国家茶树改良中心,浙江 杭州 310008
韦康(1981— ),男,浙江东阳人,副研究员,主要从事茶树分子生物学研究。

收稿日期: 2012-08-27

  修回日期: 2012-10-08

  网络出版日期: 2019-09-04

基金资助

现代农业产业技术体系建设专项资金(No. nycytx-23)、中央级公益性科研院所基本科研业务费专项(2012ZL049)

Effect of Temperature and Humidity on the Gene Expression in Buds of Tea Cuttings

  • WEI Kang ,
  • WANG Li-yuan ,
  • CHENG Hao ,
  • GONG Wu-yun ,
  • WU Li-bin
Expand
  • Tea Research Institute, Chinese Academy of Agriculture Science, National Center for Tea Improvement, Hangzhou 310008, China

Received date: 2012-08-27

  Revised date: 2012-10-08

  Online published: 2019-09-04

摘要

利用数字基因表达谱技术研究了温湿度变化对秋插茶苗芽萌发基因表达的影响。通过保温棚处理日均温度提高约5.15℃,湿度提高5.10%,两者茶苗芽萌发具有明显差异。比较保温棚与对照芽的基因表达共筛选获得949个差异表达基因,其中503个基因受保温棚处理诱导上调表达,446个基因下调表达。对差异表达基因进行GO分类分析,在P值<0.01的情况下,有360个基因与14个GO分类匹配。其中7个GO分类与光合作用相关,P值最小的GO分类为光系统,其11个基因均表现为上调表达,说明高温高湿条件具有促进光合相关基因表达的作用。这些结果将为深入研究理解茶苗的生长机制及相关基因的克隆打下基础。

本文引用格式

韦康 , 王丽鸳 , 成浩 , 龚武云 , 吴立赟 . 温湿度变化对茶苗芽萌发基因表达的影响[J]. 茶叶科学, 2013 , 33(2) : 109 -115 . DOI: 10.13305/j.cnki.jts.2013.02.010

Abstract

Differences of gene expression in buds of tea cuttings in response to temperature and humidity changes were studied. The daily temperature and humidity increased by 5.15℃ and 5.10% under plastic shading treatment. Meanwhile, bud expansion of tea cuttings under plastic shading was clearly different from that of control. After digital gene expression profiling analysis, a total of 949 differential expressed genes were obtained, including 503 up- and 446 down-regulated genes from buds of tea cuttings in plastic shed. Gene Ontology (GO) analysis showed that 360 genes were classified into 14 GO terms when P value <0.01. Seven GO terms were associated with photosynthesis. The GO term with the least P value was related to photosystem, which suggest high temperature and humidity are favorable for the induction of genes associated with photosynthesis. This study might provide new insight into understanding the mechanism of rapid propagation and related gene cloning in Camellia sinensis.

参考文献

[1] 杨亚军. 中国茶树栽培学[M]. 上海: 上海科学技术出版社, 2004: 208-222.
[2] Morrissy AS, Morin RD, Delaney A.Next-generation tag sequencing for cancer gene expression profiling[J]. Genome Res, 2009, 19: 1825-1835.
[3] Audic S, Claverie JM.The significance of digital gene expression profiles[J]. Genome Res, 1997, 7: 986-995.
[4] Squire GR.Seasonal changes in photosynthesis of tea[J]. Journal of Applied Ecology, 1981, 14: 303-316.
[5] Joshi SC, Palni LM.Clonal variation in temperature response of photosynthesis in tea[J]. Plant Science, 1997, 137: 225-232.
[6] 栾征, 曹前进, 成浩, 等. 冬季增温和延长光照对茶苗生长的影响[J]. 浙江大学学报: 农业与生命科学版, 2007, 33(5): 519-524.
[7] 张平, 铁万祝, 兰世宽, 等. 肾茶种苗扦插试验[J]. 亚热带植物科学, 2005, 34(1): 66.
[8] 成浩, 周健, 栾征, 等. CO2浓度对工厂化繁育茶苗光合和生长的影响[J]. 茶叶科学, 2007, 27(3): 226-230.
[9] 成浩, 曾建明, 周健, 等. 茶树种苗工厂化快速繁育技术[J]. 茶叶科学, 2007, 27(3): 231-235.
[10] 谷保静, 常杰, 曾建明, 等. 设施繁育茶苗适宜光照强度研究[J]. 茶叶科学, 2006, 26(1): 24-30.
[11] Saveyn A, Steppe K, Ubierna N, et al. Woody tissue photosynthesis and its contribution to trunk growth and bud development in young plants[J]. Plant Cell and Environment, 2010, 33(11):1949-1958.
[12] Buck-Sorlin G, de Visser PHB, Henke M, et al. Towards a functional-structural plant model of cut-rose: simulation of light environment, light absorption, photosynthesis and interference with the plant structure[J]. Annals of Botany, 2011, 108(6): 1121-1134.
文章导航

/