欢迎访问《茶叶科学》,今天是

茶园土壤细菌丰度及其影响因子研究

  • 韩文炎 ,
  • 王皖蒙 ,
  • 郭赟 ,
  • 杨明臻 ,
  • 贾仲君
展开
  • 1. 中国农业科学院茶叶研究所,浙江 杭州 310008;
    2. 中国科学院南京土壤研究所,江苏 南京 210008;
    3. 南京师范大学地理科学学院,江苏 南京 210046
韩文炎(1963— )男,浙江嵊州人,博士,研究员,主要从事茶园土壤和肥料研究。

收稿日期: 2012-08-13

  修回日期: 2012-10-08

  网络出版日期: 2019-09-04

基金资助

国家自然科学基金(41171218,40771113)、科技部支撑计划项目(2011BAD01B02)

Bacterial Abundance of Tea Garden Soils and Its Influencing Factors

  • HAN Wen-yan ,
  • WANG Wan-meng ,
  • GUO Yun ,
  • YANG Ming-zhen ,
  • JIA Zhong-jun
Expand
  • 1. Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China;
    2. Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
    3. College of Geography Science, Nanjing Normal University in Jiangsu, Nanjing 210046, China

Received date: 2012-08-13

  Revised date: 2012-10-08

  Online published: 2019-09-04

摘要

采用Griffiths法直接提取土壤微生物基因组DNA,并通过实时荧光定量PCR技术分析土壤微生物16βS rRNA基因数量,对茶园及其附近森林和菜园土壤的细菌丰度及其影响因素进行了研究。结果表明,茶园土壤细菌丰度在0.01×108~20.32×108 16βS rRNA基因拷贝数/g之间,平均为3.70×108 16βS rRNA基因拷贝数/g,与酸性森林土壤大致相当,但明显低于中性菜园土壤。土壤细菌丰度与pH和微生物量C呈极显著正相关(P<0.001),但与施N量和茶树种植年限呈极显著负相关(P<0.01),与土壤有机C和全N含量的相关性不明显。多元回归分析表明,影响土壤细菌丰度最重要的因子是土壤pH,其他依次为树龄和施氮量。可见,提高茶园土壤细菌数量和微生物多样性的有效办法是适当提高土壤pH值,同时避免过量施用氮肥;对于改植换种的老茶园,改良土壤也是必不可少的。

本文引用格式

韩文炎 , 王皖蒙 , 郭赟 , 杨明臻 , 贾仲君 . 茶园土壤细菌丰度及其影响因子研究[J]. 茶叶科学, 2013 , 33(2) : 147 -154 . DOI: 10.13305/j.cnki.jts.2013.02.013

Abstract

Bacterial abundances in tea garden and their adjacent forest and vegetable soils were investigated by real-time quantitative PCR (qPCR) as well as the factors that may affect the population size of bacterial communities. Soil DNA was extracted by using Griffiths’ method and bacterial abundance was determined by quantifying the copy number of 16S rRNA genes. The results showed that the bacterial abundance of tea garden soils ranged from 0.01×108 to 20.32×108 16βS rRNA gene copies/g (gram dry weight soil) with an average of 3.70×108 16βS rRNA gene copies/g, being similar with that in the forest soil, but far below that in the vegetable soil. The bacterial abundance in the tea garden soils was significantly and positively correlated with the soil pH and microbial biomass C (P<0.001) respectively, but significantly and negatively correlated with N application rate and age of tea plantation (P<0.01) respectively. There was no significant correlation between bacterial abundance and total organic C and total N in soil. Multiple regression analysis further indicated that bacterial abundance was affected most significantly by soil pH, followed by age of tea stand and annual N application rate. The results of this study suggested that soil amelioration such as raising soil pH and reducing the high rates of nitrogen application could be of great help for maintaining bacterial abundance and microbial diversity in tea garden soils.

参考文献

[1] 韩文炎, 阮建云, 林智, 等. 茶园土壤主要营养障碍因子及系列专用肥的研制[J]. 茶叶科学, 2002, 22(1): 70-74.
[2] Oh K, Kato T, Li ZP, et al. Environmental problems from tea cultivation in Japan and a control measure using calcium cyanamide[J]. Pedosphere, 2006, 16: 770-777.
[3] Han WY, Kemmitt SJ, Brookes PC.Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity[J]. Soil Biology & Biochemistry, 2007, 39: 1468-1478.
[4] Han WY, Xu JM, Yi XY, et al. Net and gross nitrification in tea soils of varying productivity and their adjacent forest and vegetable soils[J]. Soil Science and Plant Nutrition, 2012, 58: 173-182.
[5] 陈声明, 张立钦. 微生物学研究技术[M]. 北京: 科学出版社, 2006: 209.
[6] 洪祯瑞, 王益福, 方月珍, 等. 茶树根际微生物区系的研究[J]. 茶叶科学, 1985,5(2): 11-18.
[7] 李庆康, 丁瑞兴, 黄瑞采. 黄棕壤植茶后微生物数量和分布的变化[J]. 茶叶, 1990, 16(4): 4-6, 26.
[8] Pandey A, Palni LMS.The rhizosphere effect of tea on soil microbes in a Himalayan monsoonal location[J]. Biology and Fertility of Soils, 1996, 21: 131-137.
[9] Pansombat K, Kanazawa S, Horiguchi T.Microbial ecology in tea soils. 1. Soil properties and microbial populations[J]. Soil Science and Plant Nutrition, 1997, 43: 317-327.
[10] 邓欣, 谭济才, 尹丽蓉, 等. 不同茶园土壤微生物数量状况调查初报[J]. 茶叶通讯, 2005, 32(2): 7-9.
[11] 徐华勤, 肖润林, 向佐湘, 等. 不同生态管理措施对丘陵茶园土壤微生物生物量和微生物数量的影响[J]. 土壤通报, 2010, 41(6): 1355-1359.
[12] Griffiths RI, Whiteley AS, O’Donnell AG, et al. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition[J]. Applied and Environmental Microbiology, 2000, 66: 5488-5491.
[13] 郭赟, 吴宇澄, 林先贵, 等. 3次连续重复提取DNA能较好反映土壤微生物丰度[J]. 微生物学报, 2012, 52(7): 894-901.
[14] Vance ED, Brookes PC, Jenkinson DS.An extraction method for measuring soil microbial biomass C[J]. Soil Biolology & Biochemistry, 1987, 19: 703-707.
[15] Wu J, Joergensen RG, Pommerening B, et al. Measurement of soil microbial biomass C by fumigation-extraction - an automated procedure[J]. Soil Biology & Biochemistry, 1990, 22: 1167-1169.
[16] Yao H, He Z, Wilson MJ, et al. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use[J]. Microbial Ecology, 2000, 40: 223-237.
[17] Nioh I, Isobe T, Osada M.Microbial biomass and some biochemical characteristics of a strongly acid tea field soil[J]. Soil Science and Plant Nutrition, 1993, 39(4): 617-626.
[18] Fierer, N, Jackson RB. The diversity and biogeography of Soil Bacterial Communities[C]. Proceedings of National Academy of Sciences of USA, 2006, 103: 626-631.
[19] Griffiths RI, Thomson BC, James P, et al. The bacterial biogeography of British soils[J]. Environmental Microbiology, 2011, 13(6): 1642-1654.
[20] Koga K, Suehiro Y, Matsuoka ST, et al. Evaluation of growth activity of microbes in tea field soil using microbial calorimetry[J]. Journal of Bioscience and Bioengineering, 2003, 95(5): 429-434.
[21] 王世强, 胡长玉, 程东华, 等. 调节茶园土壤pH对其土著微生物区系及生理群的影响[J]. 土壤, 2011, 43(1): 76-80.
[22] 韩文炎, 李强. 茶园施肥现状与无公害茶园施肥技术[J]. 中国茶叶, 2002, 24(6): 29-31.
[23] 韩文炎, 徐建明. 茶园土壤NO3--N含量与净硝化速率的研究[J]. 茶叶科学, 2011, 31(6): 513-520.
[24] 单武雄, 罗文, 肖润林, 等. 连续5年施菜籽饼肥和稻草覆盖对茶园土壤生态系统的影响[J]. 中国生态农业学报, 2010, 18(3): 472-476.
[25] Han WY, Xu YW, Li Q.Effect of Mulching and Organic Fertilizers on Soil Fertility and the Yield and Quality of Tea in an Organic Conversion Tea Field[C]. Proceedings of the Fifth IFOAM-Asia Scientific Conference, Hangzhou, China, 2001: 130-137.
[26] 王世强, 胡长玉, 程东华, 等. Al3+胁迫对茶园土壤微生物区系及生理群的影响[J]. 环境污染与防治, 2011, 33(6): 36-38, 43.
[27] 彭仁, 郭圣茂, 孙志云. 茶多酚对土壤硝化作用的影响研究[J]. 中国土壤与肥料, 2008, 4: 50-52.
[28] 俞慎, 何振立, 陈国潮, 等. 不同树龄茶树根层土壤化学特性及其对微生物区系和数量的影响[J]. 土壤学报, 2003, 40(3): 433-439.
[29] 孙海新, 刘训理. 茶树根际微生物研究[J]. 生态学报, 2004, 24(7): 1353-1357.
[30] 薛冬, 姚槐应, 黄昌勇. 植茶年龄对茶园土壤微生物特性及酶活性的影响[J]. 水土保持学报, 2005, 19(2): 84-87.
[31] 彭萍, 李品武, 杨水平, 等. 施肥对茶园土壤微生物及土壤肥力的影响[J]. 西南农业学报, 2006, 19(6): 1096-1099.
[32] 周晓梅, 赵丹红. 松嫩平原不同生境土壤细菌数量的季节动态及与环境因子的相关分析[J]. 吉林师范大学学报: 自然科学版, 2007, 2: 28-30.
文章导航

/