欢迎访问《茶叶科学》,今天是

茶树二氢黄酮醇4-还原酶基因的克隆、表达及功能分析

  • 王云生 ,
  • 许玉娇 ,
  • 胡晓婧 ,
  • 蒋晓岚 ,
  • 杨琴 ,
  • 李伟伟 ,
  • 刘亚军 ,
  • 高丽萍 ,
  • 夏涛
展开
  • 1. 安徽农业大学生命科学学院,安徽 合肥 230036;
    2. 安徽农业大学 教育部茶叶生物化学与生物技术重点实验室,安徽 合肥 230036
王云生(1977— ),男,安徽临泉人,博士,主要从事茶树次生代谢与分子生物学研究。

收稿日期: 2012-12-14

  修回日期: 2013-01-25

  网络出版日期: 2019-09-04

基金资助

国家自然科学基金(NO. 31000314、NO. 31170647、NO.31170282、NO.31270730)

Clone, Expression and Functional Analysis of Dihydroflavonol 4-Reductase Gene of Tea Plant (Camellia sinensis)

  • WANG Yun-sheng ,
  • XU Yu-jiao ,
  • HU Xiao-jing ,
  • JIANG Xiao-lan ,
  • YANG Qing ,
  • LI Wei-wei ,
  • LIU Ya-jun ,
  • GAO Li-ping ,
  • XIA Tao
Expand
  • 1. School of Biology Science, Anhui Agricultural University, Hefei 230036, China;
    2. Key Lab of Tea Biochemistry and Biotechnology, Ministry of Education, Anhui Agricultural University, Hefei 230036, China

Received date: 2012-12-14

  Revised date: 2013-01-25

  Online published: 2019-09-04

摘要

茶树二氢黄酮醇4-还原酶(dihydroflavonol 4-reductase, DFR)是儿茶素合成途径中的关键酶。本研究采用RT-PCR技术,获得了茶树二氢黄酮醇4-还原酶基因(CsDFR)的开放阅读框,它编码含347个氨基酸的蛋白质,推测分子量为38.69βkD,等电点为6.02。成功地将该基因重组到表达载体SUMO上,并在大肠杆菌BL21中进行原核表达;优化了原核表达中诱导时间、诱导温度、IPTG浓度;纯化出目的蛋白。利用HPLC-MS方法对重组蛋白进行了体外酶活检测,结果表明目的蛋白具有DFR酶活性,可催化DHQ和DHM的还原反应。

本文引用格式

王云生 , 许玉娇 , 胡晓婧 , 蒋晓岚 , 杨琴 , 李伟伟 , 刘亚军 , 高丽萍 , 夏涛 . 茶树二氢黄酮醇4-还原酶基因的克隆、表达及功能分析[J]. 茶叶科学, 2013 , 33(3) : 193 -201 . DOI: 10.13305/j.cnki.jts.2013.03.010

Abstract

Dihydroflavonol 4-reductase (DFR) is a key enzyme in the biosynthesis of catechins in tea plant. However, the functions and the zymologic properties of DFR were not deeply identified in recent researches. The open reading frame of DFR gene, which encoding a 347 amino acids protein, was cloned from tea plant (Camellia sinensis) by RT-PCR. The deduced protein molecular weight was 38.69βkD and its theoretical isoelectric point was 6.02. The gene was cloned into the expression vector SUMO for expression in prokaryotic cells. The SDS-PAGE results showed that the dihydroflavonol 4-reductase peoteins was expressed in Escherichia coli BL21. The optimal inducing conditions including time, temperature and IPTG concentration were studied. The deduced protein was purified and its activity was detected by HPLC-MS method. The results indicated that purified protein showed the DFR activity, catalyzed the reduction reaction of DHQ and DHM. The research provides a valuable foundation for better understanding the substrate specificity and enzymatic properties of CsDFR.

参考文献

[1] Park J S, Kim J B, Hahn B S, et al. EST analysis of genes involved in secondary metabolism in Camellia sinensis (tea), using suppression subtractive hybridization[J]. Plant Science, 2004, 166(4): 953-961.
[2] Wan X, Li D, Zhang Z.Antioxidant properties and mechanisms of tea ployphenols. In: Ho C T, Lin J K, Shahidi F, eds. Tea and Tea Products[M]. New York: CRC press, 2008: 131-159.
[3] Dalluge J J, Nelson B C.Determination of tea catechins[J]. J Chromatogr A, 2000, 881(1): 411-424.
[4] 夏涛, 高丽萍. 类黄酮及茶儿茶素生物合成途径及其调控研究进展[J]. 中国农业科学, 2009, 42(8): 2899-2908.
[5] Pang Y, Peel G J, Wright E, et al. Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula[J]. Plant Physiol, 2007, 145(3): 601-615.
[6] Winkel-Shirley B.The biosynthesis of flavonoids. In: Grotewold E, Ed. The Science of Flavonoids[M]. New York: Springer Science & Business Media, 2006: 75-95.
[7] Boase M R, Lewis D H, Davies K M, et al. Isolation and antisense suppression of flavonoid 3', 5'-hydroxylase modifies flower pigments and colour in cyclamen[J]. BMC Plant Biol, 2010, 10: 107.
[8] Han Y, Vimolmangkang S, Soria-Guerra R E, et al. Ectopic expression of apple F3'H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under nitrogen stress[J]. Plant Physiol, 2010, 153(2): 806-820.
[9] Punyasiri P A N, Abeysinghe I S B, Kumar V, et al. Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways[J]. Archives of Biochemistry and Biophysics, 2004, 431(1): 22-30.
[10] Xie D Y, Sharma S B, Paiva N L, et al. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis[J]. Science, 2003, 299(5605): 396-399.
[11] 马春雷, 乔小燕, 陈亮. 茶树无色花色素还原酶基因克隆及表达分析[J]. 茶叶科学, 2010, 30(1): 27-36.
[12] Eungwanichayapant P D, Popluechai S.Accumulation of catechins in tea in relation to accumulation of mRNA from genes involved in catechin biosynthesis[J]. Plant Physiol Biochem, 2009, 47(2): 94-97.
[13] Mamati G E, Liang Y, Lu J.Expression of basic genes involved in tea polyphenol synthesis in relation to accumulation of catechins and total tea polyphenols[J]. Journal of the Science of Food and Agriculture, 2006, 86(3): 459-464.
[14] 江昌俊, 王朝霞. 茶树中提纯总RNA的研究[J]. 茶叶科学, 2000, 20(1): 27-29.
[15] 张宪林, 高丽萍, 夏涛, 等. 茶树新梢中非酯型儿茶素及其合成酶的变化规律[J]. 茶叶科学, 2009, 29(5): 365-371.
[16] Beld M, Martin C, Huits H, et al. Flavonoid synthesis in Petunia hybrida: partial characterization of dihydroflavonol-4-reductase genes[J]. Plant Mol Biol, 1989, 13(5): 491-502.
[17] Johnson E T, Ryu S, Yi H, et al. Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase[J]. Plant J, 2001, 25(3): 325-333.
[18] Wang Y S, Gao L P, Wang Z R, et al. The influence of light on the biosynthesis of catechins in tea [Camellia sinensis (L.) O. Kuntze][J]. Scientia Horticulturae, 2012, 133: 72-83.
[19] Shimada N, Sasaki R, Sato S, et al. A comprehensive analysis of six dihydroflavonol 4-reductases encoded by a gene cluster of the Lotus japonicus genome[J]. Journal of experimental botany, 2005, 56(419): 2573-2585.
[20] Xie D Y, Jackson L A, Cooper J D, et al. Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase from Medicago truncatula[J]. Plant Physiol, 2004, 134(3): 979-994.
[21] Petit P, Granier T, Estaintot B L, et al. Crystal structure of grape dihydroflavonol 4-reductase, a key enzyme in flavonoid biosynthesis[J]. J Mol Biol, 2007, 368(5): 1345-1357.
文章导航

/