欢迎访问《茶叶科学》,今天是

茶树挥发性萜类物质及其糖苷化合物生物合成的研究进展

  • 贺志荣 ,
  • 项威 ,
  • 徐燕 ,
  • 高丽萍 ,
  • 夏涛 ,
  • 魏书
展开
  • 1. 安徽农业大学茶与食品科技学院,茶叶生物化学与生物技术重点试验室,安徽 合肥 230036;
    2. 安徽农业大学生命科学技术学院, 安徽 合肥 230036
贺志荣(1987— ),男,湖南株洲人,硕士研究生,主要从事茶学方面的研究。

收稿日期: 2011-09-05

  修回日期: 2011-11-11

  网络出版日期: 2019-09-04

基金资助

国家自然科学基金委(31070614)

Progress in the Research of Biosynthesis of Volatile Terpenoids and Their Glycosides in Tea Plant

  • HE Zhi-rong ,
  • XIANG Wei ,
  • XU Yan ,
  • GAO Li-ping ,
  • XIA Tao ,
  • WEI Shu
Expand
  • 1. College of Tea and Food Science and Key lab of Tea Biochemistry and Biotechnology, Anhui Agriculture University, Hefei 230036, China;
    2. College of Life Science, Anhui Agriculture University, Hefei 230036, China

Received date: 2011-09-05

  Revised date: 2011-11-11

  Online published: 2019-09-04

摘要

挥发性单萜(C10)与倍半萜(C15),常具有宜人的花果香气。茶鲜叶中此类物质的种类及其糖苷化合物的含量和水解对成品茶的香气香型有重要影响。就可能影响茶树挥发性萜类物质及其糖苷化合物合成途径中的限速反应和相关的酶进行综述,认为1-脱氧-D-木酮糖-5-磷酸还原异构酶(DXR)和羟甲基戊二酰辅酶A还原酶(HMGR)是影响萜类代谢前体异戊烯基焦磷酸(IPP)及二甲烯丙基焦磷酸(DMAPP)的限速酶。单萜和倍半萜合成酶是挥发性萜类化合物生物合成途径中的关键酶。此外,糖基转移酶可能与茶鲜叶中糖苷态萜类香气化合物的合成和积累有关。糖苷水解酶则催化茶鲜叶中糖苷态香气物质的水解,导致香气物质的释放。调节相关基因的表达,将有可能控制萜类代谢流向挥发性萜类合成分支。本文还讨论了影响茶叶香气品质的其他因素,如茶树品种、栽培环境,以及加工方法等。

本文引用格式

贺志荣 , 项威 , 徐燕 , 高丽萍 , 夏涛 , 魏书 . 茶树挥发性萜类物质及其糖苷化合物生物合成的研究进展[J]. 茶叶科学, 2012 , 32(1) : 1 -8 . DOI: 10.13305/j.cnki.jts.2012.01.008

Abstract

Tea aromatic quality is largely dependent on the spectrum and abundance of volatile terpenoids and their glycosides produced and accumulated in tea leaves. Very often, the compounds of monoterpenes (C10) and sesquinterpene (C15) possess pleasant floral scent, contributing significantly to tea aromatic quality. However, studying on the biosynthesis pathway of these volatile terpenoids and their glycosides in tea plant is just at beginning. In this review, speed-limiting biosynthetic steps and related enzymes in plant volatile terpenoid biosynthesis pathways are summarized. The genes encoding 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) and 3-hydroxyl-3-methylglutaryl-CoA reductase (HMGR) as well as terpenoid synthases are proposed as key enzymes for volatile terpenoid biosynthesis. Uridine diphosphate-glycosyltransferase may affect biosynthesis and accumulation of glycosides of volatile terpenoids in tea plant while glycosidase play a key role in the glycoside hydrolysis and release of glycosidically bound terpenoid volatiles during tea leaf processing. Manipulation of these genes may control the flux of the terpenoid metabolism towards the volatile terpenoid biosynthesis. The factors influencing tea aromatic quality such as tea cultivars, growing management, processing ways are also discussed.

参考文献

[1] 吴勇. 萜烯类化合物与茶叶香气[J]. 化学工程与装备, 2009, 11: 123-125.
[2] 袁海波, 尹军峰, 叶国注, 等. 茶叶香型及特征物质研究进展[J]. 茶叶科学, 2009, 29(8): 14-15.
[3] 杨意成, 梁月荣. 乌龙茶花香形成机理的研究[J]. 茶叶, 2008, 34(1): 10-14.
[4] Yamanishi T.Tea flavor[M]//Jain NK. Global Advances in Tea Science. New Delhi, India: Aravalli Books International, 1999: 707-722.
[5] 廖书娟, 童华荣. 不同茶树品种脂肪酸和糖苷类香气前体分析[J]. 西南大学学报: 自然科学版, 2008, 30(8): 62-66.
[6] Wang D, Yoshimura T, Kobayashi A, et al. Analysis of glycosidically bound aroma precursors in tea leaves 1. qualitative and quantitative analyses of glycosides with aglycons as aroma compounds[J]. Agric Food Chem, 2000, 48(11): 5411-5418.
[7] 王力, 林智, 吕海鹏, 等. 茶叶香气影响因子的研究进展[J]. 食品科学, 2010, 31(15): 293-298.
[8] 张超, 卢艳, 李冀新, 等. 茶叶香气成分以及香气形成机理研究进展[J]. 福建茶叶, 2005(3): 17-19.
[9] 李艳清, 付大友, 王蓉, 等. 茶叶香气成分测定方法研究进展[J]. 茶叶科学技术, 2009: 8-15.
[10] 杜正奎, 华映芳, 谷豫红, 等. 茶鲜叶挥发油化学成分的研究[J]. 植物学报, 1982, 124(2): 23-28.
[11] 张正竹, 施兆鹏, 宛晓春. 萜类物质与茶叶香气[J]. 安徽农业大学学报, 2000, 27(1): 51-54.
[12] 宛晓春. 茶叶生物化学: 第三版[M]. 北京: 中国农业出版社, 2003.
[13] Sanderson GW, Graham HN.On the formation of black tea aroma[J]. Agric Food Chem, 1973, 21: 576-585.
[14] 王登良, 张灵枝, 毛明辉. 不同光照强度晒青对单枞茶香气成分的影响[J]. 园艺学报, 2005, 32(4): 669-672.
[15] Schieberle P.Recent developments in method for analysis of flavor compounds and their precursors[M]//Goankar A. Characterization of Food: Emerging Methods. Amsterdam: Elvesier, 1995: 403-431.
[16] Schuh C, Schieberle P.Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea quantitative differences between tea leaves and infusion[J]. Agric Food Chem, 2006, 54(3): 916-924.
[17] 王华夫, 游小青. 祁门红茶单萜烯醇形态转变的研究[J]. 中国茶叶, 1996, 18(6): 22-24.
[18] Sakata K, Guo W, Moon JH.Tea chemistry, Part II: With special reference to tea aroma precursors[M]//Jain NK. Global advances in tea science. New Delhi: Aravail Books International, 1999: 692-704.
[19] Crouzet J, Chassagne D.Glycosidically bound volatiles in plant[M]//Ikan R. Natural Occurring Glycosides. Chichester: John Wiley & Sons, 1999: 225-274.
[20] Winterhalter P, Skouroumounis G.Glycoconjugated aroma compounds: occurrence, role and biotechnological transformation[M]//Berger RG. Advances in Biochemistry/ Biotechnology. Heidelberg: Springer. 1997: 74-105.
[21] Pichersky E, Noel JP, Dudareva N.Biosynthesis of plant volatiles: nature’s diversity and ingenuity[J]. Science, 2006 (5762): 808-811.
[22] Bendayan M, Benhamou N. Ultrastructural localization of glucoside residues on tissue sections by applying the enzyme-gold approach[J]. J Histochem Cytochem, 1987, 35: 1149-1155.
[23] Caputi L, Lim EK, Bowles DJ.Discovery of new biocatalysts for the glycosylation of terpenoid scaffolds[J]. Chemistry , 2008, 14: 6656-6662.
[24] Bowles D, Lim EK, Poppenberger B, et al. Glycosyltransferases of lipophilic small molecules[J]. Annu Rev Plant Biol, 2006, 57: 567-597.
[25] Poppenberger B, Fujioka S, Soeno K, et al. The UGT73C5 of arabidopsis thaliana glucosylates brassinosteroids[J]. Proc Natl Acad Sci USA, 2005, 102(42): 15253-15258.
[26] Kurashima K, Fujii M, Ida Y, et al. Simple synthesis of β-D-glycopyranosides using β-glycosidase from almonds[J]. Chem Pharm Bull, 2004, 52(2): 270-275.
[27] Aharoni A, Ashok P, Deuerlein S, et al. Terpenoid metabolism in wild-type and transgenic Arabidopsis plant[J]. Plant Cell, 2003, 15(12): 2866-2884.
[28] ZHAO Qin, TONG Qiqing, LUO Yaoping.Effects of environmental factors on β-glucosidase activity concerned with aroma formation and alcoholic aroma in tea fresh leaves[J]. Journal of Zhejiang University:Agriculture and Life Sciences, 2000, 26(3): 266-270.
[29] Bhatia Y, Mishra S, Bisaria VS.Microbial β-glucosidases: cloning, properties, and applications[J]. CRC Crit Rev Biotechnol, 2002, 22: 375-407.
[30] Günata Z, Bitteur S, Brillout JM, et al. Sequential enzymic hydrolysis of potentially aromatic glycosides from grapes[J]. Carbohydr Res. 1988, 184: 139-149.
[31] Wang D, Kurasawa E, Yamaguchi Y, et al. Analysis of glycosidically bound aroma precursors in tea leaves 2. Changes in glycoside contents and glycosidase activities in tea leaves during the black tea manufacturing process[J]. Agric Food Chem, 2001, 49: 1900-1903.
[32] Takeo T.Production of linalool and geraniol by hydrolytic breakdown of bound forms in disrupted tea shoots[J]. Phytochemistry, 1981, 120(9): 2145-2147.
[33] 李远华, 江昌俊, 余有本. 茶树β-葡萄糖苷酶基因mRNA的表达[J]. 南京农业大学学报, 2005, 28(2): 103-106.
[34] 陆建良, 林晨, 骆颖颖, 等. 茶树重要功能基因克隆研究进展[J]. 茶叶科学, 2007, 27(2): 11-16.
[35] 赵芹, 童启庆. 茶叶香气水解酶研究动态[J]. 福建茶叶, 1999 (1): 5-8.
[36] Mizutani M, Nakanishi H, Ema J, et al. Cloning of β-primeverosidase from tea Leaves, a key enzyme in tea aroma formation[J]. Plant Physiology, 2002, 130: 2164-2176.
[37] Christianson D W.Roots of biosynthetic diversity[J]. Science, 2007, 316(5821): 60-61.
[38] Aharoni A, Jongsma MA, Bouwmeester HJ, et al. Volatile science? Metabolic engineering of terpenoids in plant[J]. Trends Plant Sci, 2005, 10(12): 594-602.
[39] Rohmer M.The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants[J]. Nat Prod Rep, 1999, 16: 565-574.
[40] Cordoba E. Salmi M, Leon P, et al. Unravelling the regulatory mechanisms that modulate the, MEP pathway in higher plants[J]. J Exp Bot, 2009, 60(10): 2933-2943.
[41] Schaller H, Grausem B, Benveniste P, et al. Expression of the Hevea brasiliensis (H.B.K.) Mull Arg 3-hydroxy-3-methylglutary-coenzyme A reductase 1 in tobacco results in sterol overproduction[J]. Plant Physiol, 1995, 109(3): 761-770.
[42] E stévez JM, Cantero A, Romero C, et al. Analysis of the expression of CLA1, a gene that encodes the 1-deoxy-Dxylulose-5-phosphate synthase of the 2-C-methyl -D-erythritol-4-phosphate pathway in Arabidopsis[J]. Plant Physiol, 2000, 124: 95-104.
[43] Estevez JM, Cantero A, Reindl A, et al. 1-Deoxy-Dxylulose--phosp 5hate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants[J]. Biol Chem, 2001, 276: 22901-22909.
[44] Davidovich-Rikanati R, Sitrit Y, et al. Enrichment of tomato flavor by diversion of the early plastidial terpenoid pathway[J]. Nat Biotechnol, 2007, 25(8): 899-901.
[45] Wu S, Schalk M, Clark A, et al. Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants[J]. Nat. Biotechnol, 2006, 24(11): 141-147.
[46] Ganjewala D, Kumar S, Luthra R, et al. An account of cloned genes of methyl-erythritol -4-phosphate pathway of isoprenoid biosynthesis in plant[J]. Curr Issues Mol Biol, 2009, 11: 35-45.
[47] Kappers IF, Aharoni A, van Herpen TWJM, et al. Geneticen engineering of terpenoid metabolism attracts bodyguards to Arabidopsis[J]. Science, 2005, 309: 2070-2072.
[48] Hohn TM, Ohlrogge JB.Expression of a fungal sesquiterpene cyclase gene in transgenic tobacco[J]. Plant Physiol, 1991, 97: 460-462.
[49] Wallaart TE, Bouwmeester HJ, Hille J, et al. Amorpha- 4,11-dienesynthase: Cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin[J]. Planta, 2001, 460-465.
[50] Schuhr CA, Radykewicz T, Sagner S, et al. Quantitative assessment of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy[J]. Phytochem Rev, 2003, 2: 3-16.
[51] 池田奈子. 因配糖体的酸水解面生成的茶叶香气成分的品种间差异[J]. 茶业研究报告, 1993, 78(增刊): 18-19.
[52] 陈亮, 赵丽萍. 茶树β-葡萄糖苷酶和β-樱草糖苷酶基因表达差异分析[J]. 园艺学报, 2009, 36(1): 87-92.
[53] 夏涛, 童启庆. 茶叶香气前驱体研究进展[J]. 茶叶科学, 1996, 16(1): 63-66.
[54] 王效举. 土壤条件与茶叶品质关系的研究[J]. 茶叶通讯, 1994(2): 4-9.
[55] 陆本坤, 黄世启. 茶树喷施锌肥实验小结[J]. 茶业通报, 2000, 22(3): 21.
[56] 董尚胜, 骆耀平, 吴俊杰, 等. 遮荫、有机肥对夏茶叶片内醇系香气生成的影响[J]. 茶叶科学, 2000, 20(2): 133-136.
[57] Owuor PO, Obaga SO, Othieno CO, et al. The effects of altitude on the chemical composition of black tea[J]. J Sci Food & Agric, 1990, 50(1): 9-17.
[58] 张凌云, 张燕忠, 叶汉钟. 采摘时期对重发酵单丛茶香气及理化品质影响研究[J]. 茶叶科学, 2007, 27(3): 236-242.
[59] 曹藩荣, 刘克斌, 刘春燕, 等. 适度低温胁迫诱导岭头单枞香气形成的研究[J]. 茶叶科学, 2006, 26(2): 136-140.
[60] 曹潘荣, 刘克斌, 刘春燕, 等. 茶角胸叶甲侵害对岭头单枞茶鲜叶芳香物质的影响[J]. 应用生态学报, 2006, 17(11): 2098-2101.
[61] 魏志文, 李大祥, 张华艳, 等. 红绿茶加工工艺对茶鲜叶香气和糖苷类香气前体的影响[J]. 中国农学通报, 2007, 23(11): 109-113.
[62] 梁晓岚, 陈春. 乌龙茶香气形成机理初探[J]. 广东农业科学, 1996(4): 24-27.
金冬双, 龚淑英, 林宇皓, 等. 小叶种夏秋茶渥堆加工过程中香气成分研究[J]. 茶叶科学, 2009, 29(2): 111-119.
文章导航

/