利用cDNA-AFLP技术研究了特异茶树品种“紫娟”幼嫩叶片和成熟叶片的基因表达差异。从256对引物组合中获得59个差异表达带,其中在幼嫩叶片中获得26个上调片段,成熟叶片中获得33个上调片段。通过GenBank BLASTX比对分析,所获得的片段包括转录因子、代谢相关蛋白、信号蛋白以及一些假设蛋白、未知蛋白和没有比对的基因片段。利用RT-PCR对片段ZM4、ZM7、ZM12进行表达特性分析表明,ZM4、ZM7、ZM12均在成熟叶片中上调表达。这些研究结果将为深入研究理解“紫娟”茶树叶色转变的机理,以及相关基因克隆打下基础。
Differences of gene expression between young and mature leaves of tea plant (Camellia sinensis var. assamica, cultivar Zijuan) were studied by cDNA-AFLP. The results showed that 59 Transcript-Derived Fragments (TDFs) were obtained, including 26 up-regulated TDFs from young leaves, and 33 up-regulated TDFs from mature leaves. According to blasting results, these TDFs were included signal transduction genes, transcription factors, primary metabolism genes, putative protein and unknown protein and no significant homology found. RT-PCR was used to analyze the expression of ZM4, ZM7, ZM12, showed that expression of these ZM4, ZM7, ZM12 increased obviously in mature leaves. This study established a basis for further understanding the purple mechanism of tea leaves in cultivar “Zijuan” and related gene cloning.
[1] 包云秀, 夏丽飞, 李友勇, 等. 茶树新品种“紫娟”[J]. 园艺学报, 2008, 35(6): 934.
[2] 蔡丽, 梁名志, 夏丽飞, 等. “紫娟”茶外观表象差异研究[J]. 西南农业学报, 2010, 23(3): 700-703.
[3] 季鹏章, 梁名志, 宋维希, 等. 茶树珍稀品种“紫娟”的叶片色素含量与叶色变化的关系研究[J]. 西南农业学报, 2010, 23(6): 1860-1863.
[4] Bachem C W B, Oomen R J F, Visser R G F. Transcript imaging with cDNA-AFI P: a step-by-step protocol[J]. Plant Molecular Biology Reporter, 1998, 16(2): 157-173.
[5] 陈林波, 李叶云, 王琴, 等. 茶树冷诱导基因RAV的克隆与表达特性分析[J]. 植物生理学通讯, 2010, 46(4): 354-358.
[6] 陈林波, 李叶云, 房超, 等. 茶树冷诱导基因的AFLP筛选及其表达分析[J]. 西北植物学报, 2011, 31(1): 1-7.
[7] 陈林波, 房超, 王郁, 等. 茶树抗逆相关基因ERF的克隆与表达特性分析[J]. 茶叶科学, 2011, 31(1): 53-58.
[8] 余梅, 江昌俊, 叶爱华, 等. 利用cDNA-AFLP技术研究茶树花蕾发育基因差异表达片段[J]. 茶叶科学, 2007, 27(3): 259-264.
[9] 吴扬. 应用cDNA-AFLP技术分离安吉白茶阶段性返白过程的差异表达基因[D]. 长沙: 湖南农业大学, 2010: 29-33.
[10] Meskauskiene R, Nater M, Goslings D, et a1. A negative regulator of chlorophyll biosynthesis inArabidopsis thaliana[J]. Proceedings of the National Academy of Sciences, 2001, 98: 12826-12831.
[11] Armstrong G A, Runge S, Frick G, et a1. Identification of NADPH: protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis inArabidopsis thaliana[J]. Plant Physiol, 1995, 108(4): 1505-1517.
[12] Rissler H M, Collakova E, Dellapenna D, et a1. Chlorophyll biosynthesis expression of a second chl I gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis[J]. Plant Physiol, 2002, 128(2): 770-779.
[13] Abbott J C, Barakate A, Pincon G, et a1. Simultaneous suppression of multiple genes by single transgenes, down-regulation of three unrelated lignin biosynthetic genes in tobacco[J]. Plant Physiol, 2002, 128(3): 844-853.
[14] Lacombe E, Hawkins S, Van Doorsselaere J, et a1. Cinnamoyl CoA reductase, the first commit-ted enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships[J]. Plant Journal, 1997, 11(3): 429-441.
[15] 宛晓春. 茶叶生物化学[M]. 北京: 中国农业出版社, 2003: 113-115.
[16] 钟巍然, 柴友荣, 张凯, 等. 苯丙烷代谢途径中细胞色素P450的研究[J]. 安徽农业科学, 2008, 36(13): 5285-5289.