欢迎访问《茶叶科学》,今天是

高浓度镉胁迫对茶树生理及吸收积累特性的影响

  • 王春梅 ,
  • 唐茜 ,
  • 张小琴 ,
  • 张冬川
展开
  • 1. 四川农业大学园艺学院,四川 雅安 625014;
    2. 四川省园艺作物技术总站,四川 成都610000
王春梅(1986— ),女,四川资阳人,在读硕士研究生,主要从事茶树栽培生理及生态研究。

收稿日期: 2011-09-19

  修回日期: 2011-12-09

  网络出版日期: 2019-09-05

基金资助

国家茶叶产业体系项目资助

Effect of High Concentrations of Cd Stress on the Physiological Characteristics, Absorbtion and Accumulation in Tea Plant

  • WANG Chun-mei ,
  • TANG Qian ,
  • ZHANG Xiao-qin ,
  • ZHANG Dong-chuan
Expand
  • 1. College of Horticulture, Sichuan Agricultural University, Ya’an 625014, China;
    2. Technology of horticultural crops in Sichuan Station, Chengdu, 610000, China

Received date: 2011-09-19

  Revised date: 2011-12-09

  Online published: 2019-09-05

摘要

以名山白毫品种茶苗为材料,通过土壤盆栽实验,研究了高浓度镉胁迫对茶树生长、生理及吸收积累特性的影响。结果表明,土壤添加0~120mg/kg镉,茶树未表现出明显受害症状。但随镉胁迫浓度的增加,各器官生长量、叶绿素合成和光合作用均受到明显抑制;超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性均逐渐降低;丙二醛(MDA)、脯氨酸(Pro)含量以及相对电导率(RC)大幅上升。茶树各器官镉含量(y)与镉胁迫浓度(x1)、土壤有效态镉含量(x2)均呈显著或极显著性正相关关系,各器官镉积累量高低顺序为:细根>粗根>主茎>枝条>叶片>新梢。土壤中有效态镉向茶树迁移是各器官所积累镉的主要来源,镉在茶树体内大部分被细根、粗根固定,向地上部运输的比例较低。

本文引用格式

王春梅 , 唐茜 , 张小琴 , 张冬川 . 高浓度镉胁迫对茶树生理及吸收积累特性的影响[J]. 茶叶科学, 2012 , 32(2) : 107 -114 . DOI: 10.13305/j.cnki.jts.2012.02.010

Abstract

:Through the soil pot experiment, investigation on the influence of high concentrations of cadmium stress on the growth, absorbtion and accumulation physical characteristics of tea plant by using Mingshanbaihao cultivar as testing material. The results showed that: Tea plants did not show obvious symptoms under the cadmium concentration of 0~120 mg/kg. The growth of various organs, chlorophyll synthesis and photosynthesis were significantly inhibited by increasing concentrations of Cd. Superoxide dismutase(SOD), peroxidase(POD), catalase(CAT) activity were gradually reduced accordingly. The content of malondialdehyde(MDA), proline(Pro) and relative conductivity(RC) increased substantially. Cadmium in various organs(y) had a significant or highly significant positive correlation with Cd concentration(x1) and available cadmium content in soil(x2). The order of cadmium contents in various organs was Fibrous roots> Roots> Stems> Branches> Leaves> New sterns>. The migration of available cadmium in soil from the underground parts to aboveground parts was the main source of cadmium in tea plants. Cadmium in tea plants mostly fixed by fibrous roots and roots, simultaneously, only a low ratio was transported to aboveground.

参考文献

[1] LagriffouI A, Mocquot B, Mench M, et al. Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plant(Zeea may. L)[J]. Plant and Soil, 1998(20): 241-250.
[2] 石元值, 马立峰, 韩文炎, 等. 汽车尾气对茶园土壤和茶叶中铅、铜、镉元素含量的影响[J]. 茶叶, 2001, 27(4): 21-24.
[3] 江用文, 陈宗懋, 鲁成银. 我国茶叶安全质量现状与建议[J]. 中国农业科技导报, 2002, 4(5): 24-27.
[4] 石元值, 吴洵. 当前我国茶叶中铅含量现状及几点建议[J]. 茶叶, 2000, 26(3): 128-129.
[5] 冯德建. 铅、镉及其复合污染对茶树生理生化及吸收积累特性的研究[D]. 成都: 四川农业大学, 2010: 2-10
[6] 唐茜, 叶善蓉, 陈能武, 等. 茶树对铬、镉的吸收积累特性研究[J]. 茶叶科学, 2008, (5): 339-347.
[7] 石元值, 阮建云, 马立峰, 等. 茶树中镉、砷元素的吸收累积特性[J]. 生态与农村环境学报, 2006, 2(3): 70-75.
[8] 兰海霞, 夏建国. 川西蒙山茶树中铅、镉元素的吸收累积特性[J]. 农业环境科学学报, 2008, 27(3): 1077-1083.
[9] 夏建国, 兰海霞. 镉胁迫对蒙山茶树生长及叶片生理指标的影响[J]. 茶叶科学, 2008, 28(1): 56-61.
[10] 熊庆娥. 植物生理学试验教程[M]. 成都: 四川科学技术出版社, 2003: 124.
[11] 王晶英. 植物生理生化试验技术与原理[M]. 哈尔滨: 东北林业大学出版社, 2003: 82-83.
[12] 赵世杰, 许长城, 邹琦, 等. 植物组织中丙二醛测定方法的改进[J]. 植物生理学讯, 1994, 26(4): 62-65.
[13] 邹琦. 植物生理学实脸指导[M]. 北京: 中国农业出版社, 2000, 8(1): 161-164.
[14] Huang YS, Luo GH, Kwan KM Frances.Peroxidation damage of oxygen freeradicals induced by cadmium to plant[J]. Acta Bot Sin, 1997(39): 522-526.
[15] 马立锋, 阮建云, 石元值, 等. 茶树氟累积特性研究[J]. 浙江农业学报, 2004, 16(2): 96-98.
[16] 苏金为. 镉诱导的茶树苗膜脂过氧化和细胞程序性死亡[J]. 植物生理与分子生物学学报, 2002, 28(4): 292-298.
[17] 王林, 史衍玺. 镉、铅及其复合物污染对辣椒生理生化特性的影响[J]. 山东农业大学学报: 自然科学版, 2005, 36(1): 107-112.
[18] Nag P, Paul AK, Mukherji S.Heavy metal effects in plant tissues involving chlorophyll, chlorophyll’s hill reaction activity & gelelectrophoretic patterns of soluble proteins[J]. Indian journal of experimental biology, 1981, 19(8): 702-706.
[19] VALLEE B L, ULMER D D.Biochemical effects of mercury, cadmium and lead[J]. Annu Rev Biochem, 1972(41): 91-98.
[20] 蔡保松, 张国平. 大、小麦对镉的吸收、运输及在籽粒中的积累[J]. 麦类作物学报, 2002, 22(3): 82-86.
[21] 檀建新, 尹君, 王文忠, 等. 镉对小麦、玉米幼苗生长和生理生化反应的影响[J]. 河北农业大学学报, 1994(17): 83-87.
[22] 阎雨平, 蔡士悦, 史艇. 广东赤红壤、红壤含镉的农作物污染效应及其临界含量研究[J]. 环境科学研究, 1992, 5(2): 49-53.
[23] 李平远, 娄运生, 王琦, 等. 6个小麦品种对铜镉吸收积累差异的比较[J]. 安徽农学通报, 2007, 13(12): 102-104.
[24] 赵秀兰, 李彦峨. 烟草积累与忍耐镉的品种差异[J]. 西南大学学报: 自然科学版, 2007, 29(3): 110-114.
[25] 朱芳, 方炜, 杨中艺. 番茄吸收和积累Cd能力的品种间差异[J]. 生态学报, 2006, 26(12): 4071-4081.
[26] SAL T D E, KRAMAER U. Mechanisms of metal hyperaccumulation in plants[M]//Raskin H, Ensley B D. Phytore Mediation of ToxicMetals: Using plant s to clear up t he environment[A]. New York: John Wiley & Sons, 2000: 231-246.
[27] SAL T D E, RAUSER W E. MgATP2dependent transport of phytochelatins across the tonoplast of oat roots[J]. Plant Physiol, 1995(107): 1293-1301.
[28] 仇硕, 张敏, 孙延东, 等. 植物重金属镉(Cd2+)吸收、运输、积累及耐性机理研究进展[J]. 西北植物学报, 2006, 26(12): 2615-2622.
[29] CL EMENS S.Molecular mechanisms of plant metal tolerance and homeostasis[J]. Planta, 2001(212): 475-486.
文章导航

/