欢迎访问《茶叶科学》,今天是

自然环境下茶树嫩梢识别方法研究

  • 韦佳佳 ,
  • 陈勇 ,
  • 金小俊 ,
  • 郑加强 ,
  • 石元值 ,
  • 张浩
展开
  • 1. 南京林业大学机械电子工程学院,江苏 南京 210037;
    2. 中国农业科学院茶叶研究所,浙江 杭州310008
韦佳佳(1987— ),男,广西恭城人,硕士研究生,主要从事数字图像处理与自动控制系统研究。

收稿日期: 2011-11-10

  修回日期: 2012-03-21

  网络出版日期: 2019-09-05

基金资助

“十二五”国家科技支撑计划项目(2011BAD20B07)

Researches on Tender Tea Shoots Identification under Natural Conditions

  • WEI Jia-jia ,
  • CHEN Yong ,
  • JIN Xiao-jun ,
  • ZHENG Jia-qiang ,
  • SHI Yuan-zhi ,
  • ZHANG Hao
Expand
  • 1. College of Electronic and Mechanical Engineering, Nanjing Forestry University, Jiangsu 210037, China;
    2. Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China

Received date: 2011-11-10

  Revised date: 2012-03-21

  Online published: 2019-09-05

摘要

嫩梢识别是实现名优茶智能采摘的前提。本文以茶树嫩梢为研究对象,基于色彩因子开展了自然环境下嫩梢识别研究,提出了采用RGB空间的R-B、YIQ空间的I、Lab空间的b、HSI空间的S,以及YCrCb空间的Cb 5种色彩因子进行图像灰度化,并选择合适的方法进行图像阈值分割,最后采用中值滤波的方法消除噪声。试验结果表明,这些方法都能够在自然环境下有效地区分嫩梢和背景,为后续名优茶智能化采茶机的研究打下理论基础。

本文引用格式

韦佳佳 , 陈勇 , 金小俊 , 郑加强 , 石元值 , 张浩 . 自然环境下茶树嫩梢识别方法研究[J]. 茶叶科学, 2012 , 32(5) : 377 -381 . DOI: 10.13305/j.cnki.jts.2012.05.004

Abstract

Identification of the tender tea shoots is the key step towards the intelligent tea harvesting. This paper presents several methods to recognize the tender tea shoots for high-quality tea production. Gray images were obtained by five color indices, which were R-B, I, b, S and Cb in RGB, YIQ, Lab, HSI and YCrCb color spaces. Then suitable threshold methods were applied to segment image, finally the median filter was used to eliminate noises. The results indicate that these methods were particularly effective for tender tea shoots identification under their natural conditions. The proposed method can be used for future intelligent tea harvest development.

参考文献

[1] 唐小林. 机械化采茶的利弊分析及发展前景[J]. 中国茶叶加工, 2008(4): 10-12.
[2] 杨福增, 杨亮亮, 田艳娜, 等. 基于颜色和形状特征的茶叶嫩芽识别方法[J]. 农业机械学报, 2009, 40(增刊): 119-123.
[3] 刘志杰, 田艳娜, 杨亮亮, 等. 重叠条件下茶叶嫩芽的自动检测方法[J]. 中国体视学与图像分析, 2009, 14(2): 129-132.
[4] Woebbecke D M, Meyer G E, Von Bargen K, et al.Shape features for identifying young weeds using image analysis[J]. Transactions of the ASAE, 1995, 38(1): 271-281.
[5] 刘健, 张云伟. 基于HSI空间的生长状态下茄子图像的分割方法[J]. 安徽农业科学, 2010, 38(14): 7554-7556.
[6] 赵杰文, 刘木华, 杨国彬. 基于HIS颜色特征的田间成熟番茄识别技术[J]. 农业机械学报, 2004, 35(5): 122-124.
[7] Bulanon D M, Kataokab T, Ota Y.A segmentation algorithm for the automatic recognition of Fuji apples at harvest[J]. Biosystem Engineering, 2002, 83(4): 405-412.
[8] Blasco J, Aleixos N, Roger J M, et al.Robotic weed control using machine vision[J]. Biosystems Engineering, 2002, 83(2): 149-157.
[9] Meyer G E, Neto J C.Verification of color vegetation indices for automated crop imaging applications[J]. Computers and Electronics in Agriculture, 2008, 63(2): 282-293.
[10] Hayashi S, Ganno K, Ishii Y.Machine vision algorithm of eggplant recognition for robotic harvesting[J]. Journal of Society of High Technology in Agriculture, 2000, 12(1): 38-46.
文章导航

/