欢迎访问《茶叶科学》,今天是

茶树中植物激素研究进展

  • 岳川 ,
  • 曾建明 ,
  • 章志芳 ,
  • 王新超 ,
  • 曹红利
展开
  • 1. 中国农业科学院茶叶研究所 国家茶树改良中心,浙江 杭州 310008;
    2. 中国农业科学院研究生院, 北京 100081
岳川(1986— ),男,云南玉溪人,硕士研究生,主要从事茶树分子生物学研究。

收稿日期: 2011-09-13

  修回日期: 2012-04-28

  网络出版日期: 2019-09-05

基金资助

国家自然科学基金(31170650)、浙江省自然科学基金重点项目(23100473)资助项目

Research Progress in the Phytohormone of Tea Plant (Camellia sinensis)

  • YUE Chuan ,
  • ZENG Jian-ming ,
  • ZHANG Zhi-fang ,
  • WANG Xin-chao ,
  • CAO Hong-li
Expand
  • 1. National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China;
    2. Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China

Received date: 2011-09-13

  Revised date: 2012-04-28

  Online published: 2019-09-05

摘要

植物激素在植物生长发育中具有重要的调控作用。本文综述了植物激素对茶树生长发育和逆境反应的调控,及植物激素在茶树外植体繁殖中的应用,并概述了当前植物激素研究的方向和重点。针对茶树中激素研究现状并结合目前分子生物学的发展,提出茶树基因组测序完成后,植物激素对茶树茶芽萌发、抗逆等调控机理的研究将成为茶叶科学研究中一个新的热点。

本文引用格式

岳川 , 曾建明 , 章志芳 , 王新超 , 曹红利 . 茶树中植物激素研究进展[J]. 茶叶科学, 2012 , 32(5) : 382 -392 . DOI: 10.13305/j.cnki.jts.2012.05.009

Abstract

Phytohormone plays a critical role in the plant growth and development. This article reviewed the plant hormone in modulating growth and development of tea plant under normal condition and under stress, the effect of hormones in tea tissue culture, and recent advance in the investigation of hormone was discussed. Consequently, it was regarded that the investigation on the regulation mechanism of phytohormone on the sprouting of tea bud and the resistance of tea plant to stress in the research will become the new hotspot after the tea plant genome being sequenced.

参考文献

[1] Santner A, Li CV, Estelle M.Plant hormones are versatile chemical regulators of plant growth[J]. Nat Chem Biol, 2009, 5(5): 301-307.
[2] 张亚丽, 乔小燕, 陈亮. 茶树ACC合成酶基因的克隆及其生物信息学分析[J].茶叶科学, 2008, 28(4): 235-241.
[3] Singh K, Kumar S, Ahuja PS.Differential expression of histone H3 gene in tea [Camellia sinensis (L.) O. Kuntze] suggests its role in growing tissue[J]. Mol Biol Rep, 2009, 36(3): 537-542.
[4] Liu S, Han B.Differential expression pattern of an acidic 9/13-lipoxygenase in flower opening and senescence and in leaf response to phloem feeders in the tea plant[J]. BMC Plant Biol, 2010, 10: 228.
[5] 陈宗懋. 中国茶经[M]. 上海: 上海文化出版社, 1992: 58-59.
[6] 粟本文, 黄亚辉, 郑宏发, 等. 茶树年生育过程内源激素含量变化研究[J]. 福建茶叶, 2003, (4): 2-3.
[7] 钱利生, 潘根生, 沈生荣. 内源吲哚乙酸和吲哚乙醛含量与茶树新梢生育的关系及外源α-萘乙酸对新梢生育和内源激素的影响[J]. 茶叶科学, 1997, 17(增刊): 92-95.
[8] 潘根生. 茶树生育与内源生长素和脱落酸的关系[J]. 茶叶科学, 1991, 11(1): 25-28.
[9] 潘根生, 沈生荣, 钱利生, 等. 茶树新梢生育的内源激素水平及其调控机理(第一报): 茶树新梢生育过程激素水平的季节变化[J]. 茶叶, 2000, 26(3): 139-143.
[10] McSteen P, Leyser O. Shoot branching[J]. Annu Rev Plant Biol, 2005, 56: 353-374.
[11] 潘根生, 沈生荣, 吴伯千, 等. 茶树新梢内源玉米素的检测及分布[J]. 茶叶科学, 1995, 15(2): 117-120.
[12] Yu LJ, Shi YF, Xiao HY, et al. Dynamic changes of endogenous GA3 and ABA contents in tea cultivars with different phenological characters and their impact on the regulation axillary buds sprouting[J]. Acta Agronomica Sinica, 2008, 34(2): 277-283.
[13] 黄亚辉, 粟本文, 郑红发, 等. 茶树春梢萌动期间内源激素含量的变化(简报)[J]. 植物生理学通讯, 2001, 37(4): 306-307.
[14] Pan GS, Masaki T, Shigeki k. A Study on the relationships between the growth of tea and endogenous hormones IAA and ABA[J]. Acta Agriculture Universitatis Zhejiangensis, 1992, 18(s): 133-137.
[15] 钱利生, 沈生荣, 潘根生. 茶树新梢内源激素的HPLC分析及日变化[J]. 茶叶科学, 1996, 16(2): 135-139.
[16] 郜爱玲, 李建安, 刘儒, 等. 高等植物花芽分化机理研究进展[J]. 经济林研究, 2010, 28(2): 131-135.
[17] 曲波, 张微, 陈旭辉, 等. 植物花芽分化研究进展[J]. 中国农学通报, 2010, 26(24): 109-114.
[18] Zhang SC, Yang CW, Peng JZ, et al. GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana[J]. Plant Mol Biol, 2009, 69: 745-759.
[19] 曾贞, 黄亚辉, 粟本文, 等. 茶树成花前后内源激素含量的变化研究[J]. 茶叶通讯, 2002, 3: 7-9.
[20] Rieu I, Omar RR, Nieves FG, et al. The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle[J]. Plant J, 2008, 53: 488-504.
[21] Khryanin VN.Role of phytohormones in sex differentiation in Plants[J]. Russian Journal of Plant Physiology, 2002, 49(4): 545-551.
[22] Peng JR.Gibberellin and jasmonate crosstalk during stamen development[J]. Journal of Integrative Plant Biology, 2009, 51(12): 1064-1070.
[23] 黄亚辉, 粟本文, 曾贞, 等. 外源激素调控茶树成花的研究[J]. 茶叶通讯, 2002, 4: 3-7.
[24] Bhattacharya A, Nagar PK, Ahuja PS.Changes in endogenous indole-3-acetic acid and some biochemical parameters during seed development in Camellia sinensis (L.) O. Kuntze[J]. Acta physiol plantarum, 2004, 26(4): 399-404.
[25] Kakkar RK, Nagar PK.Distribution and changes in endogenous polyamines during winter dormancy in tea [Camellia sinensis (L.) O. Kuntze][J]. Plant Physiol, 1997, 151: 63-67.
[26] Nagar PK, Kumar A.Changes in endogenous gibberellin activity during winter dormancy in tea [Camellia sinensis (L.) O. Kuntze][J]. Acta Physiol Plant, 2000, 22: 439-443.
[27] Gupta D, Bhardwaj R, Nagar PK, et al. Isolation and characterization of brassinosteroides from leaves of Camellia sinensis (L.) O. Kuntze[J]. Plant Growth Reg, 2004, 42: 97-100.
[28] Nagar PK, Sood S.Changes in endogenous auxins during winter dormancy in tea [Camellia sinensis (L.) O. Kuntze][J]. Acta Physiol Plantarum, 2006, 28(2): 165-169.
[29] 潘根生, 沈生荣, 吴伯千, 等. 茶树新梢生育过程内源激素水平变化[J]. 茶叶科学, 1997, 17(增刊): 86-91.
[30] 潘根生, 钱利生, 沈生荣, 等. 茶树新梢生育的内源激素水平及其调控机理(第二报): 茶树休眠与内源激素的关系[J]. 茶叶, 2000, 26(4): 200-204.
[31] Sorce C, Lombardi L, Giorgetti L, et al. Indoleacetic acid concentration and metabolism changes during bud development in tubers of two potato (Solanum tuberosum) cultivars[J]. Journal of Plant Physiology, 2009, 166: 1023-1033.
[32] Paul A, Kumar S.Responses to winter dormancy, temperature, and plant hormones share gene networks[J]. Funct Integr Genomics, 2011, 11: 659-664.
[33] Besnard F, Vernoux T, Hamant O.Organogenesis from stem cells in planta: multiple feedback loops integrating molecular and mechanical signals[J]. Cell Mol Life Sci, 2011, 68: 2885-2906.
[34] 吴彩, 方兴汉. 茶树解除休眠前后体内激素等物质变化及锌的积极影响[J]. 作物学报, 1999, 19(2): 179-184.
[35] Nagar PK.Changes in abscisic acid, phenols and indoleacetic acid in bulbs of tuberose (Polianthes tuberosa L.) during dormancy and sprouting[J]. Scientia Horticulturae, 1995, 63: 77-82.
[36] 钱利生, 潘根生, 沈生荣. 茶叶赤霉酸对茶树新梢生育及内源激素的影响[J]. 茶叶科学, 1997, 17(增刊): 96-99.
[37] 潘根生, 钱利生, 吴伯千, 等. 茶树新梢生育的内源激素水平及其调控机理(第四报): 外源激素对茶树内源激素的影响及其与新梢生长的关系[J]. 茶叶, 2001, 27(2): 25-29.
[38] 杨恕玲, 单守明, 巩传银, 等. 水杨酸对休眠期茶树光合作用和抗冻性的影响[J]. 中国农学通报, 2009, 25(15): 121-124.
[39] 杨亚军, 郑雷英, 王新超. 冷驯化和ABA对茶树抗寒3及其体内脯氨酸含量的影响[J]. 茶叶科学, 2004, 24(3): 177-182.
[40] Singh K, Kumar S, Rani A, et al. Phenylalanine ammonia-lyase (PAL) and cinnamate4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea[J]. Funct. Integr. Genomics, 2009, 9: 125-134.
[41] 林坤律, 高锦华. 赤霉素对茶树新梢生长、茶叶品质和产量的影响[J]. 植物生理学通讯, 1981, 3: 22-27.
[42] Golldack D, Lü KI, Yang O.Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network[J]. Plant Cell Rep, 2011, 30: 1383-1391.
[43] 潘根生, 钱利生, 吴伯千, 等. 茶树新梢生育的内源激素水平及其调控机理(第三报): 干旱胁迫对茶树内源激素的影响[J]. 茶叶, 2001, 27(1): 35-38.
[44] 潘根生, 吴伯千, 沈生荣, 等. 水分胁迫过程中茶树新梢内源激素水平的消长及其耐旱性的关系[J]. 中国农业科学, 1996, 29(5): 9-15.
[45] Spollen WG, Sharp RE.Role of ABA in root growth maintenance low water potentials involves regulation of ethylene synthesis or responsiveness[J]. plant physiol, 1994, 106(2): 617-625.
[46] 王华芳, 张建华, 梁建生, 等.木本植物根系及木质部汁液ABA对土壤干旱信息的感应[J]. 科学通报, 1999, 44(19): 2053-2058.
[47] Ghanem ME, Hichri I, Smigocki AC, et al. Root-targeted biotechnology to mediate hormonal signaling and improve crop stress tolerance[J]. Plant Cell Rep, 2011, 30(5): 807-823.
[48] Groppa MD, Benavides MP.Polyamines and abiotic stress: recent advances[J]. Amino Acids, 2008, 34: 35-45.
[49] Alcázar R, Altabella T, Marco F.Polyamines: molecules with regulatory functions in plant abiotic stress tolerance[J]. Planta, 2010, 231: 1237-1249.
[50] Khandelwal A, Cho SH, Marella H, et al. Role of ABA and ABI3 in desiccation tolerance[J]. Science, 2010, 327: 546.
[51] Kovács Z, Livia SS, Szǖcs A, et al. Differential effects of cold, osmotic stress and abscisic acid on polyamine accumulation in wheat[J]. Amino Acids, 2010, 38: 623-631.
[52] Bari R, Jones JD.Role of plant hormones in plant defence responses[J]. Plant Mol Biol, 2009, 69: 473-488.
[53] 蔡晓明, 孙晓玲, 董文霞, 等. 应用zNoseTM分析被害茶树的挥发物[J]. 生态学报, 2009, 29(1): 169-177.
[54] 桂连友, 刘树生, 陈宗懋. 外源茉莉酸和荣莉酸甲酯诱导植物抗虫作用及其机理[J]. 昆虫学报, 2004, 47(4): 507-514.
[55] 王三根. 细胞分裂素在植物抗逆和延衰中的作用[J]. 植物学通报, 2000, 17(2): 121-126.
[56] Engelbrecht L, Organ U, Heese W.Leafminer cuterpillars and cytokinins in the green islands of autremn leaves[J]. Nature, 1969, 233: 319.
[57] 李国婧, 周燮. 水杨酸与植物抗非生物胁迫[J]. 植物学通报, 2001, 18(3): 295-302.
[58] 杨伟, 简桂良, 赵磊, 等. 乙烯代谢与植物抗病性[C]//成卓敏. 科技创新与绿色植保——中国植物保护学会2006学术年会论文集. 北京: 中国农业科学技术出版社, 2006: 194-201.
[59] 江昌俊. 茶树育种学[M]. 北京: 中国农业出版社, 2005: 162.
[60] 吴扬, 邓婷婷, 黄建安. 茶树组织培养的影响因素及应用展望[J]. 茶叶通讯, 2009, 36(2): 14-17.
[61] 张亚萍, 邵鸿刚. 不同茶树品种组织培养的初步研究[J]. 贵州茶叶, 2002, 4: 10-12.
[62] 郭玉琼, 陈财珍, 赖钟雄, 等. 茶树花药愈伤组织诱导及茶多酚含量测定[J]. 福建茶叶, 2001, 4: 7-10.
[63] Mondal TM, Bhattacharya A, Sood A, et al. Micropropagation of tea [camellia sinensis (L.)O. Kuntze] using thidiazuron[J]. Plant Growth Reg, 1998, 26: 57-61.
[64] Sandal I, Bhattacharya A, Ahuja PS.An efficient liquid culture system for tea shoot proliferation[J]. Plant Cell, Tissue and Organ Culture, 2001, 65: 75-80.
[65] Sharma P, Pandey S, Bhattacharya A, et al. ABA associated biochemical changes during somatic embryo development in Camellia sinensis (L.) O. Kuntze[J]. J Plant Physiol, 2004, 161(11): 1269-1276.
[66] 梁金波, 张强, 戴居会. 茶树“二段法”快繁育苗水培生根技术研究试验初探[J]. 茶叶, 2009, 35(1): 14-16.
[67] 周健, 成浩, 王丽鸳. 激素处理对茶树组培苗温室内直接诱导生根的影响[J]. 茶叶科学, 2005, 25(4): 265-269.
[68] Ponsamuel J, Samon NP, Ganeshan PS, et al. Somatic embryogenesis and regeneration from the immature cotyledonary tissues of cultivate tea[Camellia sinensis(L). O. Kuntze][J]. Plant Cell Rep, 1996, 16: 210-221.
[69] 周健, 成浩, 王丽鸳. 茶树幼胚培养萌发率与再生途径影响因素研究[J]. 西南农业学报, 2008, 21(2): 440-443.
[70] 谭和平, 余桂荣, 杜文平, 等. 不同茶树品种组培快繁技术研究[J]. 西南农业学报, 2003, 16(1): 102-105.
[71] Akulaa, Doddwa.Direct somatic embryogenesis in a selected tea clone, “TR-2025” [Camellia sinensis (L.) O. Kuntze] from nodalex plants[J]. Plant Cell Rep, 1998, 17(10): 804-809.
[72] 黄亚辉. 茶树茎尖培养研究初报[J]. 茶叶通讯, 1992, 2: 18-20.
[73] Shibata M, Kuranuki Y.Improvement of medium components for in vitro cuttings of tea plant (1) Effects of concentrations between MS medium and woody plant medium[J]. Tea Industry Research Rep, 1993, 77: 39-45.
[74] Yoichi S.Differentiation of adventitious buds from stem segment culture of Camellis sinensis (L.) O. Kuntze[J]. Tea Industry Research Rep, 1998, 87(S): 44-45.
[75] 刘德华, 廖利民, 周带娣. 茶树组织培养研究II腋芽微繁殖和叶微繁殖技术的研究[J]. 湖南农学院院报, 1991, 17(增刊): 589-599.
[76] 王云. 不同激素配比对茶树苗组织培养的影响[J]. 安徽农业科技, 2006, 34(14): 3312-3313.
[77] 杨国伟, 兰蓉, 王晓杰, 等. 茶树愈伤组织诱导和组织培养[J]. 江苏农业科技, 2006, 4: 122-125.
[78] Dharmasiri N, Dharmasiri S, Estelle M.The F-box protein TIR1 is an auxin receptor[J]. Nature, 2005, 435(7041): 441-445.
[79] Kepiski S, Leyer O.The Arabidopsis F-box protein TIR1 is an auxin receptor[J]. Nature, 2005, 435(7041): 446-451.
[80] Tan X, LI CV, Sharon M, et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase[J]. Nature, 2007, 446(7136): 640-645.
[81] Ueguchi-Tanaka M, Ashikari M, Nakajima M, et a1. Gibberellin in sensitive dwarf 1 encodes a soluble receptor for gibberellin[J]. Nature, 2005, 437: 693-698.
[82] Nakajima, Shimada A, Takashi Y, et al. Identification and characterization of Arabidopsis gibberellin receptors[J]. Plant J, 2006, 46: 880-889.
[83] Higuchi M, Pischke MS, MähÖnen AP, et al. In planta functions of the Arabidopsis cytokinin receptor family[J]. Proc Natl Acad Sci USA, 2004, 101(23): 8821-8826.
[84] Hua J, ChangC, Sun Q, et al. Ethylene insensitivity conferred by Arabidopsis ERS gene[J]. Science, 1995, 269(2531): 1712-1714.
[85] Hua J, Sakai H, Nourizadeh S, et al. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis[J]. Plant Cell, 1998, 10(8): 1321-1332.
[86] Chang C, Stadler R.Ethylene hormone receptor action in Arabidopsis[J]. BioEssays, 2001, 23(7): 619-627.
[87] Melcher K, Ng LM, Zhou XE, et al. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors[J]. Nature, 2009, 462(7273): 602-608.
[88] Nishimura N, Sarkeshik A, Nito K, et al. PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis[J]. Plant J, 2010, 61(2): 290-299.
[89] Li J, Wen J, Lease KA, et al. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling[J]. Cell, 2002, 110(2): 213-222.
[90] Nam KH, Li J.BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling[J]. Cell, 2002, 110(2): 203-212.
[91] Sheard LB, Tan X, Mao H, et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor[J]. Nature, 2010, 468(7322): 400-405.
[92] Rubio V, Bustos R, Irigoyen ML, et al. Plant hormones and nutrient signaling[J]. Plant Mol Biol, 2009, 69: 361-373.
文章导航

/