本试验利用体外酶学方法,结合薄层层析(TLC)、高效液相色谱(HPLC)和液相色谱-串联质谱(LC-MS/MS)分析,首次从茶树中检测到活性较高的酯型儿茶素水解酶(Galloylated Catechins Hydrolase,GCH)的存在。在酯型儿茶素水解酶催化下,酯型儿茶素发生水解反应,生成没食子酸(GA)和非酯型儿茶素。试验确立了酯型儿茶素水解酶的最适检测体系,在2.5mL反应体系中包含0.2mmol/L酯型儿茶素、2.4mmol/L抗坏血酸、粗酶提取液若干(含0.1mg酶蛋白)和0.1mol/L磷酸缓冲液(pH6.5),在30℃下,反应30min。此外,试验利用硫酸铵分级沉淀、阴离子交换层析和凝胶过滤层析对该酶进行了初步纯化。
In this experiment, high activity of galloylated catechins hydrolase (GCH) was detected existing in tea plant 〔Camellia sinensis (L.) O. Kuntze〕 by enzymology analysis in vitro, combining thin layer chromatography (TLC), high performance liquid chromatography (HPLC), and liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. The galloylated catechins could be hydrolyzed to ungalloylated catechins and gallic acid (GA) with the GCH action. The optimum reaction assay of GCH has been established. The 2.5mL enzyme reaction assay included 0.1mol/L phosphate buffer (pH 6.5), 0.2mmol/L EGCG, 2.4mmol/L sodium ascorbate, crude enzyme extract (0.1mg total protein), and then it was incubated at 30℃ for 30min. Besides, the crude enzyme extract was partially purified via ammonium sulfate fractionation, anion exchange chromatography on Q Sepharose Fast Flow column and gel filtration chromatography on superdex 200 sequentially.
[1] Liu Y, Gao L, Xia T, et al. Investigation of the site-specific accumulation of catechins in the tea plant [Camellia sinensis (L.) O. Kuntze] via vanillin-HCl staining[J]. J Agric Food Chem, 2009, 57(21): 10371-10376.
[2] Singh K, Rani A, Paul A, et al. Differential display mediated cloning of anthocyanidin reductase gene from tea (Camellia sinensis) and its relationship with the concentration of epicatechins[J]. Tree Physiol, 2009, 29(6): 837-846.
[3] 夏涛, 高丽萍. 类黄酮及茶儿茶素生物合成途径及其调控研究进展[J]. 中国农业科学, 2009, 42(8):2899-2908.
[4] Winkel-Shirley B.Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology[J]. Plant Physiol, 2001, 126(2): 485-493.
[5] Xie DY, Sharma SB, Paiva NL, et al. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis[J]. Science, 2003, 299(5605): 396-399.
[6] Xie DY, Jackson LA, Cooper JD, et al. Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase from Medicago truncatula[J]. Plant Physiol, 2004, 134(3): 979-994.
[7] Dixon RA, Xie DY, Sharma SB.Proanthocyanidins-a final frontier in flavonoid research[J]. New Phytol, 2005, 165(1): 9-28.
[8] Pang Y, Peel GJ, Sharma SB, et al. A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula[J]. Proc Natl Acad Sci U S A, 2008, 105(37): 14210-14215.
[9] Winkel-Shirley B.The biosynthesis of flavonoids. In: E. Grotewold, Eds, The Science of Flavonoids[M]. New York: Springer Science & Business Media, 2006: 75-95.
[10] Punyasiri PA, Abeysinghe IS, Kumar V, et al. Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways[J]. Arch Biochem Biophys, 2004, 431(1): 22-30.
[11] 马春雷, 乔小燕, 陈亮. 茶树无色花色素还原酶基因克隆及表达分析[J]. 茶叶科学, 2010, 30(1): 27-36.
[12] Zhao J, Pang Y, Dixon RA.The mysteries of proanthocyanidin transport and polymerization[J]. Plant Physiol, 2010, 153(2): 437-443.
[13] Neilson AP, Hopf AS, Cooper BR, et al. Catechin degradation with concurrent formation of homo- and heterocatechin dimers during in vitro digestion[J]. J Agric Food Chem, 2007, 55(22): 8941-8949.
[14] Parmentier F.A direct spectrophotometric method for the assay of tannase[J]. Arch Int Physiol Biochim, 1970, 78(1): 131-133.
[15] Niehaus JU, Gross GG.A gallotannin degrading esterase from leaves of pedunculate oak[J]. Phytochemistry, 1997, 45(8): 1555-1560.
[16] Bradford MM.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72(1/2): 248-254.
[17] Miketova P, Schram KH, Whitney JL, et al. Mass spectrometry of selected components of biological interest in green tea extracts[J]. J Nat Prod, 1998, 61(4): 461-467.
[18] 王正荣. 茶儿茶素-香草醛酸性试剂检测方法的研究[J]. 安徽农业大学学报, 2010, 37(4): 675-681.
[19] Lin LZ, Chen P, Harnly JM.New phenolic components and chromatographic profiles of green and fermented teas[J]. J Agric Food Chem, 2008, 56(17): 8130-8140.
[20] Subramanian N, Venkatesh P, Ganguli S, et al. Role of polyphenol oxidase and peroxidase in the generation of black tea theaflavins[J]. J Agric Food Chem, 1999, 47(7): 2571-2578.
[21] Sang S, Yang CS, Ho CT.Peroxidase-mediated oxidation of catechins[J]. Phytochemistry Reviews, 2004, 3(1/2): 229-241.
[22] Haslam E.Vegetable tannins-lessons of a phytochemical lifetime[J]. Phytochemistry, 2007, 68(22/23/24): 2713-2721.
[23] Powell C, Clifford MN, Opie SC, et al. Tea cream formation: the contribution of black tea phenolic pigments determined by HPLC[J]. J Sci Food Agric, 1993, 63(1): 77-86.
[24] Li M, Kai Y, Qiang H, et al. Biodegradation of gallotannins and ellagitannins[J]. J Basic Microbiol, 2006, 46(1): 68-84.
[25] Belmares R, Contreras-Esquivel JC, Rodriguez-Herrera R, et al. Microbial production of tannase: an enzyme with potential use in food industry[J]. Lebensm-Wiss Technol-Food Sci, 2004, 37(8): 857-864.
[26] Madhavakrishna W, Bose SM, Nayudamma Y.Estimation of tannase and certain oxidizing enzymes in Indian vegetable tanstuffs[J]. Bull Cent Leath Res Instit, 1960(7): 1-11.