为在分子水平上鉴定“玉绿”和“玉笋”的父本,本研究采用EST-SSR标记对其母本和4个可能父本进行了分析。结果表明,筛选的16对核心引物共检测到34个等位位点,每个引物1~3个,平均2.12个。玉绿与薮北实生单株及4个可能父本的相同位点数分别占玉绿扩增总位点数的72.22%、44.44%、55.56%、72.22%、61.11%,最大为薮北实生单株和湘波绿,最小为福鼎大白茶;玉笋分别为73.91%、43.48%、52.17%、60.87%和47.83%,最大为薮北实生单株,最小也为福鼎大白茶。8份供试材料间相似系数变幅为0.19~0.85,平均0.52。根据相似系数UPGMA聚类,在相似系数0.61处将参试8份材料分为4类:第I类为薮北、薮北实生单株、玉笋;第II类为龙井43;第III类包括湘波绿、玉绿、槠叶齐;第IV类为福鼎大白茶。参试材料的相似系数和亲缘关系树状图在分子水平上显示了玉绿和玉笋杂交亲本间的遗传差异较大,推测湘波绿可能是玉绿的父本,而玉笋的父本还有待进一步验证。
EST-SSR primers were used to identify the male parents for Yulv and Yusun among Yabukita seeding and other 4 possible male parents. Totally 34 alleles were amplified using 16 core EST-SSR primers, the number of alleles per primer ranged from 1 to 3, on average of 2.12. The percentage of common alleles with Yulv is 72.22%, 44.44%, 55.56%, 72.22%, 61.11% each other, the maximum is Yabukita seeding and Xiangbolv, the minimum is Fuding Dabaicha, The percentage of Yusun is 73.91%, 43.48%, 52.17%, 60.87% and 47.83%, respectively, the maximum is Yabukita seeding, the minimum is Fuding Dabaicha.The similarity coefficient among different cultivars varied from 0.19 to 0.85, on average of 0.52. The 8 accessions were classified into 4 groups based on the UPGMA method with the similarity coefficient at 0.61: The first group is Yabukita, Yabukita seeding and Yusun. The second is Longjing 43. The third is Xiangbolv, Yulv and Zhuyeqi. The last is Fuding Dabaicha. The results of the similarity coefficient and dendrogram showed that the accessiongs have more genetic diversity and heterosis, Xiangbolv is the possible male parent of Yulv and which of Yusun should be identified furtherly.
[1] 杨阳, 张曙光, 曾贞, 等. 早生优质高产绿茶新品种玉绿的选育[J]. 湖南农业大学学报, 2006, 32(1): 41~44.
[2] 张曙光, 杨阳, 曾贞, 等. 早生优质高产绿茶新品种玉笋的选育[J]. 湖南农业科学, 2007, 3: 23~25.
[3] 梁月荣, 田中淳一, 武田善行. 应用RAPD分子标记分析“晚绿”品种的杂交亲本[J]. 茶叶科学, 2000, 19(1): 13~16.
[4] 田中淳一, 山口聪. 用RAPD进行茶树品种的亲子关系鉴定[J]. 野菜·茶业试验场研究报告B(茶叶), 1996, 9: 31~36.
[5] 黎星辉, 施兆鹏, 刘春林, 等. 云南大叶茶与汝城白毛茶杂交后代的RAPD亲子鉴定[J]. 茶叶科学, 2001, 21(2): 99~102.
[6] 罗军武, 施兆鹏, 李家贤, 等. RAPD分子标记在茶树亲子鉴定中的应用[J]. 湖南农业大学学报, 2002, 28(6): 502~505.
[7] 刘本英, 周健, 许玫, 等. 云南大理茶与福鼎大白茶种间杂交幼胚的组织培养及亲子鉴定[J]. 园艺学报, 2008, 35(5): 735~740.
[8] Eujayl L, Sorrells M E, Baum M, et a1. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat[J]. Theoretical and Applied Genetics, 2002, 104: 399~407.
[9] Heckenberger M, vallder V J R, Melchinger A E, et a1. Variation of DNA fingerprints among accessions within maize inbred lines and implications for identification of essentially derived varieties II. Genetic and technical sources of variation in AFLP data and comparison with SSR data[J]. Molecular Breeding, 2003, 12: 97~106.
[10] 金基强, 崔海瑞, 陈文岳, 等. 茶树EST-SSR的信息分析与标记建立[J]. 茶叶科学, 2006, 26(1): 17~23.
[11] 刘振, 王新超, 赵丽萍, 等. 基于EST-SSR的西南地区茶树资源遗传多样性和亲缘关系分析[J]. 分子植物育种, 2008, 6(1): 100~110.
[12] Zhao L P, Liu Z, Chen L, et al. Generation and characterization of polymorphic expressed sequence tag-derived polymorphic microsatellites from tea plant(Camellia sinensis) and cross-species amplification in its closely related species and varieties[J]. Conservation Genetics, 2008, 9: 1327~1331.
[13] 姚明哲, 刘振, 陈亮, 等. 利用EST-SSR分析江北茶区茶树资源的遗传多样性和遗传结构[J]. 茶叶科学, 2009, 29(3): 243~250.
[14] 杨阳, 刘振, 赵洋, 等. 利用EST-SSR标记研究黄金茶群体遗传多样性及遗传分化[J]. 茶叶科学, 2009, 29(3): 236~242.
[15] 陈亮, 陈大明, 高其康, 等. 茶树基因组DNA提取与鉴定[J]. 茶叶科学, 1997, 17(2): 177~181.
[16] Rohlf F J.NTSYSpc: Numerical taxonomy and multivariate analysis system, Version 2.1[M]. Exeter Software, Applied Biostatistics Inc., New York, USA, 2000: 16~29.
[17] Martinez L E, Cavagnaro P F, Masuelli R W, et al. SSR-based assessment of genetic diversity in south American Vitis vinifera varieties[J]. Plant Science, 2006, 170: 1036~1044.
[18] Nei M.Estimation of average heterozygosity and genetic distance from a small number of individuals[J]. Genetics, 1978, 89: 583~590.