欢迎访问《茶叶科学》,今天是

清香型乌龙茶品质形成过程中儿茶素类和嘌呤碱指纹图谱变化规律

  • 陈林 ,
  • 陈键 ,
  • 张应根 ,
  • 邬龄盛 ,
  • 王振康 ,
  • 杨卫 ,
  • 尤志明
展开
  • 1. 福建省农业科学院茶叶研究所,福建 福安 355015;
    2. 安徽农业大学农业部茶及药用植物安全生产重点开放实验室,安徽 合肥 230036
陈林(1975– ),男,博士,副研究员,主要从事茶叶加工、茶叶生物化学及其综合利用方面的研究。

收稿日期: 2011-08-12

  修回日期: 2011-10-10

  网络出版日期: 2019-09-09

基金资助

福建省属公益类项目(2009R10030-1)、国家茶叶产业技术体系建设专项

Variation of Catechins and Purine Alkaloids Fingerprints during the Formation of Fresh Scent-Flavor Oolong Tea

  • CHEN Lin ,
  • CHEN Jian ,
  • ZHANG Ying-gen ,
  • WU Ling-sheng ,
  • WANG Zhen-kang ,
  • YANG Wei ,
  • YOU Zhi-ming
Expand
  • 1. Tea research institute, Fujian Academy of Agricultural Sciences, Fu’an 355015 China;
    2. Key Laboratory of Tea & Medicinal Plant and Product Safety of Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China;

Received date: 2011-08-12

  Revised date: 2011-10-10

  Online published: 2019-09-09

摘要

分别以铁观音、黄棪、金观音和黄观音品种春茶新梢为供试材料,对其新梢生育及清香型乌龙茶制作过程中的儿茶素类和嘌呤碱进行高效液相色谱检测分析,结果表明该方法的稳定性、精密度和重现性等符合茶样儿茶素类和嘌呤碱指纹图谱构建要求。运用指纹图谱数据处理软件ChemPattern 2.0专业版对所获得的指纹图谱数据进行相似度分析、聚类分析和主成分分析均可获得较为一致的模式识别结果。在茶树新梢生育过程中,各茶样指纹图谱存在较大差异,且能与清香型乌龙茶在制品(Work in process, WIP)指纹图谱相区分;采用聚类分析法(欧氏距离-近邻法),尤其是主成分分析法(Log变换数据预处理),可实现清香型乌龙茶在制品的品种鉴别。各茶树品种在新梢生育过程中以EGC含量变化最为明显,其次为EGCG和咖啡碱;在清香型乌龙茶制作过程中则以EGCG变化较为明显,其次为EGC。儿茶素类和嘌呤碱在新梢生育过程中含量及组成的动态变化较在清香型乌龙茶制作工艺中的变化更为明显。

本文引用格式

陈林 , 陈键 , 张应根 , 邬龄盛 , 王振康 , 杨卫 , 尤志明 . 清香型乌龙茶品质形成过程中儿茶素类和嘌呤碱指纹图谱变化规律[J]. 茶叶科学, 2011 , 31(6) : 493 -503 . DOI: 10.13305/j.cnki.jts.2011.06.003

Abstract

The spring shoots of Tieguanyin, Huangdan, Jinguanyin, Huangguanyin (Camellia sinensis) was respectively used as materials for the test, and catechins and purine alkaloids of the samples prepared during the period of shoot growth and the process of fresh scent-flavor Oolong tea were determined by high-performance liquid chromatography. The results showed that the stability, precision and reproducibility of the method were qualified for requirements to build catechins and purine alkaloids fingerprints of tea samples. When dealt with ChemPattern 2.0 Professional Version, a kind of fingerprint data processing software, the consistent pattern recognition results could be obtained by similarity analysis, cluster analysis and principal component analysis. The fingerprints of various tea samples were quite different during the period of shoot growth, and could be distinguished from the WIP of fresh scent-flavor Oolong tea. Every tea sample of the WIP of fresh scent-flavor Oolong tea could be well identified by cluster analysis (Euclidean-Nearest Neighbor), especially for principal component analysis (data pretreated with Log Transformation). The change in the content of (-)-epigallocatechin (EGC) was the most obvious during the period of shoot growth in each tea sample, which was followed by (-)-epigallocatechin gallate (EGCG) and caffeine. While the change in the content of (-)-epigallocatechin gallate (EGCG) was more obvious during the process of fresh scent-flavor Oolong tea, which was followed by EGC. The contents and compositions of catechins and purine alkaloids changed more significantly during the period of shoot growth than those in the process of fen-flavor Oolong tea.

参考文献

[1] 张水存. 福建乌龙茶60年产销历程[J]. 中国茶叶, 2010, 32(5): 10-11.
[2] 张天福. 茶树品种与制茶工艺对乌龙茶品质风格的影响[J]. 福建茶叶, 1994(3): 5-7.
[3] 李家光. 适制乌龙茶的茶树品种、生态环境与成茶品质[J]. 福建茶叶, 1986(3): 7-9.
[4] 姜绍丰. 中国乌龙茶产业发展现状[J]. 中国茶叶, 2008, 30(9): 6-9.
[5] 金心怡, 孙云, 孙威江, 等. 清香型乌龙茶品质特征与发展现状[J]. 中国茶叶, 2007, 29(1): 12-13.
[6] 匿名. 中药色谱指纹图谱质量控制的主要倡导者——记中国药学发展奖•地奥药学科学技术奖(中药奖)二等奖获得者谢培山主任药师[J]. 中国新药杂志, 2003, 12(2): 150.
[7] 任德权. 中药指纹图谱质控技术的意义与作用[J]. 中药材, 2001, 24(4): 235-239.
[8] 丁阳平, 刘仲华, 黄建安. 茶黄素类高效薄层色谱指纹图谱研究[J]. 食品工业科技, 2007, (6): 210-212.
[9] 罗一帆, 郭振飞, 许旋, 等. 广东岭头单枞茶高效液相色谱指纹图谱的研究[J]. 食品科学, 2005, 26(4): 206-209.
[10] 成浩, 王丽鸳, 周健, 等. 基于化学指纹图谱的绿茶原料品种判别分析[J]. 中国农业科学, 2008, 41(8): 2413-2418.
[11] 宁井铭, 张正竹, 谷勋刚, 等. 基于高效液相色谱的普洱晒青毛茶指纹图谱识别方法[J]. 农业工程学报, 2010, 26(3): 243-248.
[12] 王丽鸳, 成浩, 周健, 等. 基于多元化学指纹图谱的武夷岩茶身份判别研究[J]. 茶叶科学, 2010, 30(2): 83-88.
[13] Song G Q, Lin J M, Qu F, et al. Study of tea digitized chromatographic fingerprint spectra using micellar electrokinetic chromatography[J]. Chin J Chem, 2003, 21(10): 1325-1329.
[14] 高俊. 黄山毛峰茶指纹图谱的初步研究[D]. 合肥: 安徽农业大学, 2008.
[15] 占茉莉, 李勇, 魏益民, 等. 应用FT-IR光谱指纹分析和模式识别技术溯源茶叶产地的研究[J]. 核农学报, 2008, 22(6): 829-833.
[16] 廖步岩. 近红外光谱技术在茶叶鉴别中的应用研究[D]. 合肥:安徽农业大学,. 2009.
[17] 周健, 成浩, 叶阳, 等. 滇青、青饼和普洱茶(熟饼)近红外指纹图谱分析[J]. 核农学报, 2009, 23(1): 110-113.
[18] 聂志矗. 茶叶主要组份的光谱特性研究[D]. 保定: 河北大学, 2010.
[19] Wang L, Xu R, Hu B, et al. Analysis of free amino acids in Chinese teas and flower of tea plant by high performance liquid chromatography combined with solid-phase extraction[J]. Food Chem, 2010, 123(4): 1259-1266.
[20] Chang K H, Chen R L C, Hsieh B C, et al. A hand-held electronic tongue based on fluorometry for taste assessment of tea[J]. Biosens Bioelectron, 2010, 26(4): 1507-1513.
[21] 陈波, 张巍, 康海宁, 等. 茶叶的1HNMR指纹图谱研究[J]. 波谱学杂志, 2006, 23(2): 169-180.
[22] Lu W J, Zou H B, Zhang X L, et al. Study on 1HNMR fingerprint spectra of tea by common and variation peak ratio dual-index sequence analysis method[J]. Anal Lett, 2009, 42(14): 2244-2253.
[23] 赵蕊. 基于NMR的茶叶指纹识别方法研究[D]. 北京: 北京师范大学, 2010.
[24] Borse B B, Rao L J M, Nagalakshmi S. et al. Fingerprint of black teas from India: identification of the regio-specific characteristics[J]. Food Chem, 2002, 79(4): 419-424.
[25] 梁华正, 陈焕文. 表面解吸常压化学电离质谱法快速测定茶叶化学指纹图谱[J]. 应用化学, 2008, 25: 519-523.
[26] Pripdeevech P, Machan T.Fingerprint of volatile flavour constituents and antioxidant activities of teas from Thailand[J]. Food Chem, 2011, 125(2): 797-802.
[27] 杨亚军. 中国茶树栽培学[M]. 上海: 上海科学技术出版社, 2005: 140-141.
[28] Ashihara H, Kubota H.Patterns of adenine metabolism and caffeine biosynthesis in different parts of tea seedlings[J]. Physiol Plant, 1986, 68(2): 275-281.
[29] 肖伟祥. 浅析绿茶制造中儿茶素的变化机理[J]. 蚕桑茶叶通讯, 1989(1): 1-3.
[30] 郭吉春, 杨如兴, 张文锦, 等. 茶树杂交种金观音与黄观音的选育及应用[J]. 贵州科学, 2008, 26(2): 20-24.
[31] 中国农业科学院茶叶研究所. 茶树生理及茶叶生化实验手册[M]. 北京: 中国农业出版社, 1983: 121.
[32] 张方舟, 陈加友. 清香型乌龙茶空调做青设备及加工的关键技术[J]. 中国茶叶, 2005, 27(1): 32-33.
[33] 苏静, 常世卿. 中药色谱指纹图谱技术与应用[M]. 郑州: 郑州大学出版社, 2008: 153-160.
[34] Ananingsih V K, Sharma A, Zhou W.Green tea catechins during food processing and storage: A review on stability and detection[J]. Food Res Int, 2011, doi:10.1016/j.foodres.2011.03.004.
[35] 陈硕, 曾仲大, 梁逸曾, 等. 鱼腥草注射液指纹图谱数据库系统的实现与应用[J]. 计算机与应用化学, 2006, 23(9): 835-838.
[36] 孙国祥, 智雪枝, 张春玲, 等. 中药色谱指纹图谱超信息特征数字化评价系统[J]. 中南药学, 2007, 5(6): 549-555.
[37] 王钧, 赵曰利. 浙大中药指纹图谱相似度计算软件在烟用香精香料色谱分析中的引入应用[J]. 现代仪器, 2007, (3): 47-49.
[38] 董鸿晔, 王海慧, 金杰, 等. 中药色谱指纹图谱辅助分析系统的设计与应用[J]. 沈阳药科大学学报, 2008, 25(2): 126-132.
[39] 梁健, 孙国祥, 熊丽, 等. 中药HPLC指纹图谱在线专家系统分离系统初步研究[J]. 中南药学, 2009, 7(3): 220-223.
[40] 陈爱明, 梁逸曾, 张良晓, 等. 烟用香精香料指纹图谱质量控制系统的构建[J]. 计算机与应用化学, 2009, 26(3): 373-378.
[41] 王启帅, 肖功胜, 杨云, 等. 北柴胡气相指纹图谱数据的化学计量学分析[J]. 中国现代应用药学, 2010, 27(12): 1097-1102.
[42] 谷瑞敏, 涂洪谊, 孙鹤. 中药色谱指纹图谱相似度计算方法的探讨[J]. 中成药, 2009, 31(7): 988-990.
[43] Liang Y Z, Xie P S, Chau F.Chromatographic fingerprinting and related chemometric techniques for quality control of traditional Chinese medicines[J]. J Sep Sci, 2010, 33(3): 410-421.
[44] Liang Y Z, Xie P S, Chan K.Perspective of chemical fingerprinting of Chinese herbs[J]. Planta Med, 2010, 76(17): 1997-2003.
[45] 杨云. 中药指纹图谱数据处理技术的研究及应用[D]. 广州: 华南理工大学, 2007.
[46] Horie H, Kohata K.Analysis of tea components by high-performance liquid chromatography and high-performance capillary electrophoresis[J]. J Chromatogr A, 2000, 881(1-2): 425-438.
[47] Chen Q, Zhao J, Chaitep S, et al. Simultaneous analysis of main catechins contents in green tea [Camellia sinensis (L.)] by Fourier transform near infrared reflectance (FT-NIR) spectroscopy[J]. Food Chem, 2009, 113(4): 1272-1277.
[48] Hu B, Wang L, Zhou B, et al. Efficient procedure for isolating methylated catechins from green tea and effective simultaneous analysis of ten catechins, three purine alkaloids, and gallic acid in tea by high-performance liquid chromatography with diode array detection[J]. J Chromatogr, A, 2009, 1216(15): 3223-3231.
文章导航

/