用微型DPSA-1仪结合丝网印刷碳电极(SPCE),以微分电位溶出法对茶叶中的铅、镉、铜进行同步快速检测。优化的试验参数如下:Hg2+浓度为3×10-4 mol/L,支持电解质为1.5 mol/L pH4.0的氯化铵溶液,富集电位-1.1 V,终止电位-0.2 V,富集时间200 s。在此条件下获得的检测结果在20~840 μg/L(相当于茶叶中铅含量为1~42 mg/kg)范围内呈现良好的线性关系,铅的相关系数为r=0.99749,检出限为1.12 μg/L(S/N=3);镉的相关系数为r=0.99740,检出限为1.09 μg/L(S/N=3);铜的相关系数为r=0.99612,检出限为1.23 μg/L(S/N=3)。研究了检测过程中存在多种干扰离子对于铅、镉、铜检测的干扰情况。试验所得检测结果与国标检测法进行t检验,无显著差异。比较常规的检测技术,微型DPSA-1型仪结合SPCE微分电位溶出法同步检测茶叶中的铅、镉、铜,是更加经济的一种快速检测方法,可实现样品的高比例筛检,还可推广应用于其他类型食品和环境样品中铅、镉、铜的同步快速检测。
Mini DPSA-1 device, coupled to screen-printed carbon electrodes (SPCE), was used for simultaneous rapid detection of lead, cadmium and copper in tea by differential potentiometric stripping analysis (DPSA). The optimized experimental parameters were as follows, Hg2+ concentration — 3×10-4 mol/L, supporting electrolyte — 1.5 mol/L pH4.0 NH4Cl, deposition potential — -1.1 V, final potential —-0.2 V, deposition time — 200 s. The potentiometric stripping response for lead, cadmium and copper following 200 s deposition was linear over the concentration range examined (20~840 μg/L) with r values of 0.99749, 0.99740 and 0.99612 and detection limit of 1.12 μg/L, 1.09 μg/L and 1.23 μg/L (S/N=3), respectively. The interferences of various metal ions were also examined in the determination of lead, cadmium and copper. No significant difference existed after the rapid detection results were compared with GB method using t test. In comparing with conventional detection technique, this detection method for lead, cadmium and copper in tea, using mini DPSA-1 instrument, coupled to SPCE by DPSA, was a cheaper rapid detection technique. It could achieve a high percentage of sample screening and be applied to the simultaneous rapid detection of lead, cadmium and copper in other food and environmental samples.
[1] 蔡军. 我国茶叶出口现状及思考[J]. 中国茶叶, 2009, 31(2): 14-15.
[2] 中华人民共和国国家标准. GB 2762—2005, 食品中污染物限量[S]. 中华人民共和国卫生部, 2005.
[3] 中华人民共和国农业行业标准. NY659-2003, 茶叶中铬、镉、汞、砷及氟化物限量[S]. 中华人民共和国农业部, 2003.
[4] 中华人民共和国农业行业标准. NY/T288-2002, 绿色食品茶叶[S]. 中华人民共和国农业部, 2002.
[5] 中华人民共和国农业行业标准. NY5196-2002, 有机茶[S]. 中华人民共和国农业部, 2002.
[6] 傅明, 袁智能, 黄志强, 等. 火焰原子吸收光谱法测定茶叶中的铅[J]. 光谱实验室, 2002(01): 65-67.
[7] 问思恩, 王益昌. 微波消解石墨炉原子吸收光谱法测定水产品中镉[J]. 光谱实验室, 2009, 26(1): 96-99.
[8] 王玉功, 拉毛吉, 毛振才. 电感耦合等离子体-发射光谱法( ICP-AES)快速测定饮用水中8种微量元素[J]. 分析测试技术与仪器, 2008, 14(3): 161-163.
[9] 舒友琴, 袁道强. 毛细管离子分析法测定茶叶中的锌、锰、铜、铅和镉[J]. 茶叶科学, 2005, 25(2): 121-125.
[10] 中华人民共和国国家标准. GB/T 5009.12-2003, 食品中铅的测定[S]. 中华人民共和国卫生部, 2004.
[11] 李宏卫, 曹建劲, 苏志华. 铅检测方法研究进展[J]. 安徽农业科学, 2008, 36(19): 8255—8256.
[12] 赵广英, 吴燕艳. 丝网印刷碳电极传感器检测茶叶中痕量铅研究[J]. 茶叶科学, 2008, 28(2): 93-100.
[13] V Meuccia, S Laschib, M Minunnib, et al. An optimized digestion method coupled to electrochemical sensor for the determination of Cd, Cu, Pb and Hg in fish by square wave anodic stripping voltammetry[J]. Talanta, 2009(77): 1143-1148.
[14] 刘红伟, 章建军, 李向力. 微波消解-微分电位溶出法同时测定蔬菜中铅、镉[J]. 江西农业学报, 2008, 20(6): 77-78.
[15] 简文杰, 何静, 庞杰, 等. 差示脉冲溶出伏安法测定皮蛋中铅含量[J]. 中国食品学报, 2006, 6(4): 127-132.
[16] 李建军, 晁娅楠, 张勋, 等. 微分电位溶出法直接测定食醋中铅的含量[J]. 郑州轻工业学院学报, 2007, 22(5): 15-17.
[17] Raquel Güella b c, Gemma Aragaya b, Clàudia Fontàsc, et al. Sensitive and stable monitoring of lead and cadmium in seawater using screen-printed electrode and electrochemical stripping analysis[J]. Analytica Chimica Acta, 2008(627): 219-224.
[18] Slavka Stankovic, Dragana Cickaric, Jelena Markovic.Determination of Pb and Cd in water by potentiometric stripping analysis (PSA)[J]. Desalination, 213(2007): 282-287.
[19] 童基均, 汪亚明, 黄文清, 等. 基于平面印刷碳电极的重金属离子检测[J]. 传感技术学报, 2004, (1): 22-25.
[20] 中华人民共和国出入境检验检疫行业标准. SN/T 2056—2008, 进出口茶叶中铅、砷、镉、铜、铁含量的测定电感耦合等离子体原子发射光谱法[S]. 中国标准出版社, 2008.