研究在不同光照条件下(光强分别为自然光的8%、15%、35%、42%、50%及75%)生长的茶树扦插苗的光合作用,叶绿素含量和生长情况。结果表明:茶树扦插苗的光合速率(Pn)、最大光合速率(Pnmax)、表观量子效率(AQY)均在自然光强的75%时达到最大值; 叶绿素含量随光强的增加而降低,叶绿素a/b则随光强增加而增加; 新生物量与最大光合速率一致,在自然光强的75%时达到最大值; 其植株生根率、出现愈伤组织的比率、根条比及根生物量比(RMR)随光强的增加而增加,死亡率、SLA及LAR随光强的增加而降低。根据实验结果,适当提高大棚透光率及在阴天对大棚中的茶苗进行加光处理,对快速繁育茶苗有利。
谷保静
,
常杰
,
曾建明
,
王丽鸳
,
袁海波
,
葛滢
,
廖建雄
,
周健
,
成浩
. 设施繁育茶苗适宜光照强度研究[J]. 茶叶科学, 2006
, 26(1)
: 24
-30
.
DOI: 10.13305/j.cnki.jts.2006.01.004
The photosynthesis, chlorophyll content and the growth traits of the clone tea seedling grown under different light conditions (8%, 15%, 35%, 42%, 50% and 75% ambient light) under the greenhouse were compared. The photosynthetic rate (Pn), maximum photosynthetic rate (Pnmax), apparent quantum yield (AQY) and new biomass reached their maximum values at 75% ambient light condition. The content of chlorophyll, death rate, specific leaf area (SLA) and leaf area ratio (LAR) decreased with the increase of light intensity, while the ratio of chlorophyll a/b, root emerging rate of the plant, traumatic tissue formation rate, root shoot ratio (R/S) and root mass ratio (RMR) increased as the light intensity increased. 50% and 75% ambient light were beneficial for the fast seedling-breeding to increase the light transmissivity of the green house and improve the light intensity for the seedling in the tents during cloudy days.
[1] 曾建明, 谷保静, 常杰, 等. 茶树工厂化育苗适宜基质水分条件研究[J]. 茶叶科学, 2005, 25(4): 270~274.
[2] 陈杖洲. 茶园水分管理技术措施[J]. 贵州茶叶, 2003, 2: 7~9.
[3] 杨亚军. 中国茶树栽培学[M]. 上海:上海科学技术出版社,2005: 199~221.
[4] Hunt R.Plant Growth Analysis[J]. Edward Arnold, London, 1978, 27~29.
[5] 彭运生, 刘恩. 关于提取叶绿素方法的比较研究[J]. 北京农业大学学报, 1992, 18(3): 247~250.
[6] Terashima I, Hikosaka K.Comparative ecophysiology of leaf and canopy photosynthesis[J]. Plant Cell Environ, 1995, 18: 1111~1128.
[7] Villar R, Veneklaas EJ, Jordano P, et al. Relative growth rate and biomass allocation in 20 Aegilops (Poaceae) species[J]. New Phytol, 1998, 140(3): 425~437.
[8] 曾小平, 赵平, 蔡锡安, 等. 不同土壤水分条件下焕镛木幼苗的生理生态特性[J]. 生态学杂志, 2004, 23(2): 26~3l.
[9] Augspurger CK.Light requirements of neotropical tree seedlings: A comparative study of growth and survival. Ecology, 1984, 72: 777~795.
[10] Jones RH, Mcleod KW.Growth and photosynthetic responses to a range of light environments in Chinese tallowtree and Carolina ash seedlings. Forest Science, 1990, 36: 851~862.
[11] Kremer E, Kropff MJ.Comparative Growth of Triazine-susceptible and resistant Biotypes of Solanum nigrum at Different Light Levels[J]. Annals of Botany, 1999, 83: 637~644.
[12] Vats SK, Pandy S, Nagar PK.Photosynthetic response to irradiance in Valeriana jatamansi Jones, a threatened understorey medicinal herb of werstern Himalaya[J]. Photosynthetica, 2002, 40(4): 625~628.
[13] 张应根, 张方舟, 张文锦, 等. 遮荫对夏暑乌龙茶叶片组织结构的影响[J]. 茶叶科学技术, 2000, 4: 12~14.
[14] 艾希珍, 郭延奎, 马兴庄, 等. 弱光条件下日光温室黄瓜需光特性及叶绿体超微结构[J]. 中国农业科学, 2004, 37(2): 268~273.
[15] Schiefthaler U, Russell AW, Bolhàr-Nordenkampf HR, Critchley C.Photoregulation and Photodamage in Schefflera arboricola leaves adapted to different light environments[J]. Aust J Plant Physiol, 1999, 26: 485~494.
[16] Anderson J.M.Photoregulation of the composition, function and structure of thylakoid membranes - Annu. Rev[J]. Plant Physiol, 1986, 37: 93~136.
[17] Nishio J N, Sun J, Vogelmann T C.Photoinhibition and the light environment within leaves. In: Baker NR, Bowyer JR (ed): Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field[J]. Oxford: Bios Scientific Pub, 1994: 221~237.
[18] Genty B, Harbinson J.Regulation of light utilization for photosynthetic electron transport. In: Baker NR (ed): Photosynthesis and the environment. Dordrecht- Boston-London: Kluwer Academic Pub, 1996: 67~99.