欢迎访问《茶叶科学》,今天是

茶叶纤维对Cu2+的吸附性能研究

  • 崔晓宁 ,
  • 侯伟华 ,
  • 杨晓萍 ,
  • 谭杨 ,
  • 蔡金鑫
展开
  • 1. 华中农业大学园艺林学学院,湖北 武汉 430070;
    2. 湖北恩施州农科院茶叶研究所,湖北 恩施445000
崔晓宁(1984— ),女,河北石家庄人,从事茶叶深加工及综合利用方面的研究。

收稿日期: 2010-01-25

  修回日期: 2010-04-12

  网络出版日期: 2019-09-11

基金资助

华中农业大学第二批“国家大学生创新性实验计划”

Study on Adsorption Characteristic of Cu(Ⅱ) Ions by Tea Fiber

  • CUI Xiao-ning ,
  • HOU Wei-hua ,
  • YANG Xiao-ping ,
  • TAN Yang ,
  • CAI Jin-xin
Expand
  • 1. College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China;
    2. Tea Research Institute of Enshi Academy of Agricultural Sciences, Enshi 445000, China

Received date: 2010-01-25

  Revised date: 2010-04-12

  Online published: 2019-09-11

摘要

对茶叶纤维吸附Cu2+的性能进行了研究。结果表明,茶叶纤维对Cu2+有明显的吸附作用。pH值为4.55左右,温度在30℃左右时,对Cu2+的吸附较为有利;当Cu2+的质量浓度为200 mg/L时,随着茶叶纤维添加量增加,吸附量先升后降,茶叶纤维添加量为90 mg左右时吸附量最大。茶叶纤维对Cu2+的吸附过程符合拟二级动力学方程。Langmuir等温吸附方程比Freundlich方程能更好地描述茶叶纤维对Cu2+的平衡吸附行为,最大吸附量达到16.78 mg/g。

关键词: 茶叶纤维; 吸附; Cu2+

本文引用格式

崔晓宁 , 侯伟华 , 杨晓萍 , 谭杨 , 蔡金鑫 . 茶叶纤维对Cu2+的吸附性能研究[J]. 茶叶科学, 2010 , 30(4) : 259 -262 . DOI: 10.13305/j.cnki.jts.2010.04.004

Abstract

The ability of tea fiber to absorb the Cu2+ was investigated. The results showed that the optimal pH value and temperature for the adsorption were about 4.55 and 30℃ respectively. When Cu2+ initial concentration was 200 mg/L, the adsorption capacity of tea fiber rose first and then decreased with the increase of its addition, and the adsorption capacity reached the maximum with its addition dose of 90 mg. The adsorption process of tea fiber for Cu2+ followed a pseudo-second order kinetic equation. The adsorption was more fitted to the Langmuir isotherm equation than the Freundlich isotherm equation. The maximum adsorption capacity was 16.78 mg/g.

参考文献

[1] Sud D, Mahajan G, Kaur M P.Agricultural waste materials as potential adsorbent for sequestering heavy metal ions from aueous solutions-A review[J]. Bioresource Technology, 2008, 99(14):6017-6027.
[2] 蔡佳亮, 黄艺, 礼晓. 生物吸附剂对污染物吸附的细胞学机理[J]. 生态学杂志, 2008, 27(6): 1005-1011.
[3] 杨中民, 杨春芬, 王光灿, 等. 市售绿茶自水溶液中对Au(Ⅲ)离子的吸附和解吸附[J]. 离子交换与吸附, 1998, 14(5): 176-180.
[4] 木村优, 山下博美, 驹田顺子. 绿茶捕集剂除去重金属[J]. 分析化学(日), 1986(35): 400.
[5] 李明静, 陈映霞, 何建英, 等. 信阳废次茶残渣对Au(Ⅲ)的吸附研究[J]. 化学研究, 2000, 11(2): 40-42.
[6] 艾仄宜, 张洁, 杨晓萍, 等. 茶叶非水溶性膳食纤维的提取及其理化性质的研究[J]. 食品科学, 2010, 31(8): 121-124.
[7] 曾庆梅, 杨毅, 殷允旭, 等. 梨渣水不溶性膳食纤维的提取工艺研究[J]. 食品科学, 2008, 29(8): 275-278.
[8] 许晖, 孙兰萍, 张胜义, 等. 壳聚糖铁(Ⅲ)配合物吸附动力学研究[J]. 食品科学, 2007, 28(1): 64-65.
[9] Winter M J. d-Block chemistry [M]. New York: Oxford University Press, 1994: 42.
[10] Langmuir I.The constitution and fundamental ProPerties of solids and liquids[J]. Journal of the Franklin Institute, 1917, 1(138): 102-105.
[11] Bellot J C, Condoret J S.Modelling of liquid chromatography equilibria[J]. Process Biochemistry. 1993, 28(2): 365-376.
[12] 周利民, 王一平, 黄群武, 等. 改性磁性壳聚糖微球对Cu2+、Cd2+和Ni2+的吸附性能[J]. 物理化学学报, 2007, 23(12): 1979-1984.
[13] Miranda M A, Dhandapani P, Helen Kalavathy M.Activated Ipomoea carnea a biosorbent for the copper sorption rom aqueous solution Kocadagistan[J]. Desalination, 2004(164): 135-140.
[14] Šæiban M, Klašnja M, Škrbiæ B.Adsorption of copper ions from water by modified agricultural by-products[J]. Desalination, 2008(229): 170-180.
[15] Bouzid J, Eloueara Z, Ksibia M, et al. A study on removal characteristics of copper from aqueous solution by sewage sludge and pomace ashes[J]. Journal of Hazardous Materials, 2008(152): 838-845.
文章导航

/