欢迎访问《茶叶科学》,今天是

茶树遗传图谱研究进展

  • 马建强 ,
  • 姚明哲 ,
  • 陈亮
展开
  • 中国农业科学院茶叶研究所茶树资源与改良研究中心/国家茶树改良中心,浙江 杭州 310008
马建强(1985— ),男,四川成都人,硕士研究生,从事茶树分子标记辅助育种研究。

收稿日期: 2010-01-06

  修回日期: 2010-03-11

  网络出版日期: 2019-09-11

基金资助

国家“863”计划(2006AA10Z171),国家自然科学基金(30901159),“现代农业产业技术体系建设专项资金”,“十一五”国家科技支撑计划(2006BAD13B06),公益性行业(农业)科研专项(3-35-02)

Research Progress in Genetic Map of Tea Plant (Camellia sinensis)

  • MA Jian-qiang ,
  • YAO Ming-zhe ,
  • CHEN Liang
Expand
  • National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China

Received date: 2010-01-06

  Revised date: 2010-03-11

  Online published: 2019-09-11

摘要

茶树世代周期长,自交不亲和,遗传组成高度异质杂合,利用常规育种方法培育新品种费时耗力。高质量的茶树遗传图谱,可以用于茶树基因组结构及遗传演化分析、数量性状位点定位、基因克隆,为分子标记辅助育种奠定良好的基础,对于加快茶树育种进程具有重要意义。本文对遗传图谱的构建原理、步骤及目前国内外茶树遗传图谱的研究进展进行简要概述,探讨了目前该领域研究中存在的主要问题,并由此提出加速茶树遗传图谱研究进程的设想。

关键词: 茶树; 遗传图谱; 微卫星

本文引用格式

马建强 , 姚明哲 , 陈亮 . 茶树遗传图谱研究进展[J]. 茶叶科学, 2010 , 30(5) : 329 -335 . DOI: 10.13305/j.cnki.jts.2010.05.001

Abstract

Conventional breeding of tea plant is laborious and time-consuming, due to long generation, self-incompatibility and high heterozygosity. A saturated genetic map is a vital tool in the analysis of genome structure, genetic evolution, QTLs (Quantitative trait loci), gene cloning and MAS (Marker assisted selection), which may provide great potential for accelerating cultivar improvement programme in tea plant. This paper introduced the construction theory and procedure of genetic mapping, as well as research progress and problems encountered by previous workers in genetic map construction of tea plant. Finally, we proposed improved strategies for the construction of genetic map of tea plant.

参考文献

[1] 虞富莲. 论茶树原产地和起源中心[J]. 茶叶科学, 1986, 6(1): 1-8.
[2] Hasimoto M, Takasi S.Morphological studies on the origin of the tea plant V: A proposal of one place of origin by cluster analysis[J]. Jpn J Trop Agr, 1978(21): 93-101.
[3] 竹尾忠一, 游小清, 王华夫, 等. 中国茶树的起源与分布—根据茶叶香气组分中萜烯指数化学分类所作的推论[J]. 茶叶科学, 1992, 12(2): 81-86.
[4] Tanaka J, Taniguchi F, Hirai N, et al. Estimation of the genome size of tea(Camellia sinensis), Camellia (C. japonica), and their interspecific hybrids by flow cytometry[J]. Tea Res J, 2006(101): 1-7.
[5] 陈亮, 杨亚军, 虞富莲. 中国茶树种质资源研究的主要进展和展望[J]. 植物遗传资源学报, 2004, 5(4): 389-392.
[6] Gunasekare MTK.Applications of molecular markers to the genetic improvement of Camellia sinensis L.(tea)[J]. J Hortic Sci Biotech, 2007, 82(2): 161-169.
[7] Ni S, Yao MZ, Chen L, et al. Germplasm and breeding research of tea plant, Camellia sinensis (L.) O. Kuntze, based on DNA molecular marker approaches[J]. Front Agric China, 2008, 2(2): 200-207.
[8] Edwards MD, Helentjaris T, Wright S, et al. Molecular-marker-facilitated investigations of quantitative trait loci in maize[J]. Theor Appl Genet, 1992, 83(6/7): 765-744.
[9] Michelmore RW, Paran I, Kesseli RV.Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations[J]. Proc Natl Acad. Sci USA, 1991, 88(21): 9828-9832.
[10] Song K, Slocum MK, Osborn TC.Molecular marker analysis of genes controlling morphological variation in Brassica rapa (syn. campestris)[J]. Theor Appl Genet, 1995, 90(1): 1-10.
[11] 沈利爽, 朱立煌. 植物的比较基因组研究和大遗传系统[J]. 生物工程进展, 1995, 15(2): 23-28.
[12] Donis-Keller H, Green P, Helms C, et al. A genetic linkage map of the human genome[J]. Cell, 1987, 51(2): 319-337.
[13] Murray JC, Buetow KH, Weber JL, et al. A comprehensive human linkage map with centimorgan density[J]. Science, 1994, 265(5181): 2049-2054.
[14] Zimdahl H, Nyakatura G, Brandt P, et al. A SNP map of the rat genome generated from cDNA sequences[J]. Science, 2004, 303(5659): 807.
[15] Moen T, Hayes B, Baranski M, et al. A linkage map of the Atlantic salmon(Salmo salar) based on EST-derived SNP markers[J]. BMC Genomics, 2008(9): 223.
[16] Bohn M, Khairallah MM, González-de-León D, et al. QTL mapping in tropical maize: I. Genomic regions affecting leaf feeding resistance to sugarcane borer and other traits[J]. Crop Sci, 1996(36): 1352-1361.
[17] Weeden NF, Hemmat M, Lawon DW, et al. Development and application of molecular marker linkage map in woody fruit crops[J]. Euphytica, 1994(77): 71-75.
[18] Grattapaglia D, Sederoff R.Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo test cross:mapping strategy and RAPD markers[J]. Genetics, 1994(137): 1121-1137.
[19] Taniguchi F, Tanaka J, Kono I, et al. Construction of genetic linkage map of tea using SSR markers[C]//The Organization Committee of the 2007 ICOS. Proceedings of the 3rd International Conference on O-Cha (tea) Culture and Science(ICOS). Shizuoka: The Organization Committee of the 2007 ICOS, 2007.
[20] Brondani RP, Williams ER, Brondani C, et al. A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus[J]. BMC Plant Biol, 2006(6): 20.
[21] Doucleff M, Jin Y, Gao F, et al. A genetic linkage map of grape, utilizing Vitis rupestris and Vitis arizonica[J]. Theor Appl Genet, 2004, 109(6): 1178-1187.
[22] 田中淳一. RAPDをべースにしたチャの连锁地图の作成と遗传解析への利用の可能性[J]. 茶業研究報告, 1996, 84(别册): 44-45.
[23] 田中淳一, 渡部育夫. チセの成叶のテアニンの含量のQTL解析[J]. 茶業研究報告, 1996, 84(别册): 46-47.
[24] 田中淳一, 涂木裕一郎, 山口聪. チセの萌芽の早晚と关连のめられDNAマカとその遗传[J]. 茶業研究報告, 1996, 84(别册): 47-49.
[25] 涂木裕一郎, 田中淳一, 伊藤阳子. チセ炭そ病抵抗性と关连のめられゐDNAマカ[J]. 茶業研究報告, 1996, 84(别册): 50-51.
[26] 大前英, 田中淳一. 茶叶の耐冻性に关连ガめられゐDNAアヵ[J]. 茶業研究報告, 1996,84(别册): 52-53.
[27] 田中淳一, 泽井佑典. チセの成叶のタソニン含量と关连の认められゐDNAマカにつぃて[J]. 茶業研究報告, 1997, 85(别册): 24-25.
[28] Hackett CA, Wachira FN, Paul S, et al. Construction of a genetic linkage map for Camellia sinensis(tea)[J]. Heredity, 2000, 85(4): 346-355.
[29] 黄建安, 李家贤, 黄意欢, 等. 茶树AFLP分子连锁图谱的构建[J]. 茶叶科学, 2005, 25(1): 7-15.
[30] Ota S, Tanaka J.RAPD-based linkage mapping using F1 segregating populations derived from crossings between tea cultivar 'Sayamakaori' and strain 'Kana-Ck17'[J]. Breeding Res, 1999(1): 16.
[31] 黄福平, 梁月荣, 陆建良, 等. 应用RAPD和ISSR分子标记构建茶树回交1代部分遗传图谱[J]. 茶叶科学, 2006, 26(3): 171-176.
[32] Mewan KM, Saha MC, Konstantin C, et al. Construction of a genomic and EST SSR based saturated genetic linkage map of tea (Camellia sinensis L.)[C]//The Organization Committee of the 2007 ICOS. Proceedings of the 3rd International Conference on O-Cha (tea) Culture and Science(ICOS), Shizuoka: The Organization Committee of the 2007 ICOS, 2007.
[33] Zamir D, Tadmor Y.Unequal segregation of molecular genes in plants[J]. Bot Gaz, 1986(147): 355-358.
[34] 徐云壁, 朱立煌. 分子数量遗传学[M]. 北京: 中国农业出版社, 1994: 81-85.
[35] Costa P, Pot D, Dubos C, et al. A genetic map of Maritime pine based on AFLP, RAPD and protein markers[J]. Theor Appl Genet, 2000(100): 39-48.
[36] Paterson AH, De Verna JW, Lanini B, et al. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes in an interspecies cross of tomato[J]. Genetics, 1990, 124(3): 735-742.
[37] Strauss SH, Lande R, Namkoong G.Limitation of molecular marker aided selection in forest tree beeding[J]. Can J Forest Res, 1992, 22(7):1050-1061.
[38] Litt M
[39] stractPlus"Luty JA. Hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene[J]. Am J Hum Genet, 1989, 44(3): 397-401.
[40] Tautz D.Hypervariability of simple sequences as a general source for polymorphic DNA markers[J]. Nucleic Acids Res, 1989, 17(16): 6463-6471.
[41] Powell W, Machray GC, Provan J.Polymorphism revealed by simple sequence repeats[J]. Trends Plant Sci, 1996, 1(7): 215-222.
[42] Hearnden PR, Eckermann PJ, McMichael GL, et al. A genetic map of 1000 SSR and DArT markers in a wide barley cross[J]. Theor Appl Genet, 2007, 115(3): 383-391.
[43] Shimoda N, Knapik EW, Ziniti J, et al. Zebrafish genetic map with 2000 microsatellite markers[J]. Genomics, 1999, 58(3): 219-232.
[44] Freeman S, West J, James C, et al. Isolation and characterization of highly polymorphic microsatellites in tea (Camellia sinensis)[J]. Mol Ecol Resour, 2004, 4(3): 324-326.
[45] Thiel T, Michalek W, Varshney RK, et al. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.)[J]. Theor Appl Genet, 2003, 106(3): 411-422.
[46] Hung CY, Wang KH, Huang CC, et al. Isolation and characterization of 11 microsatellite loci from Camellia sinensis in Taiwan using PCR-based isolation of microsatellite arrays(PIMA)[J]. Conserv Genet, 2008, 9(3): 779-781.
[47] Yang JB, Yang J, Li HT, et al. Isolation and characterization of 15 microsatellite markers from wild tea plant (Camellia taliensis) using fiasco method[J]. Conserv Genet, 2009, 10(5): 1621-1623.
[48] Adams MD, Kelley JM, Gocayne JD, et al. Complementary DNA sequencing: expressed sequence tags and human genome project[J]. Science, 1991, 252(5013): 1651-1656.
[49] Chen L, Zhao LP, Ma CL, et al. Recent progress in the molecular biology of tea (Camellia sinensis) based on the expressed sequence tag strategy:a review[J]. J Hortic Sci Biotech, 2009, 84(5): 476-482.
[50] Chen L, Zhao LP, Gao QK.Generation and analysis of expressed sequence tags from the tender shoots cDNA library of tea plant (Camellia sinensis)[J]. Plant Sci, 2005, 168(2): 359-363.
[51] 赵丽萍, 马春雷, 陈亮. 茶树幼根cDNA文库构建及其表达序列标签特性分析[J]. 分子植物育种, 2008, 8(5): 893-898.
[52] 金基强, 崔海瑞, 陈文岳, 等. 茶树EST-SSR的信息分析与标记建立[J]. 茶叶科学, 2006, 26(1):17-23.
[53] Zhao LP, Liu Z, Chen L, et al. Generation and characterization of 24 novel EST derived microsatellites from tea plant (Camellia sinensis) and cross-species amplification in its closely related species and varieties[J]. Conserv Genet, 2008, 9(5):1327-1331.
[54] 乔婷婷, 马春雷, 周炎花, 等. 浙江省茶树地方品种与选育品种遗传多样性和群体结构的EST-SSR分析[J]. 作物学报, 2010, 36(4): 1-10.
[55] 刘振, 姚明哲, 王新超, 等. 基于EST-SSR的福建地区茶树资源遗传多样性和亲缘关系分析[J]. 中国农业科学, 2009, 42(5): 1720-1727.
[56] Maliepaard C, Jansen J, Van Ooijen JW.Linkage analysis in a full-sib family of an outbreeding plant specie:overview and consequences for applications[J]. Genet Res, 1997(70): 237-250.
[57] Gale MD, Devos KM.Plant comparative genetics after 10 years[J]. Science, 1998, 282(5389): 656-659.
[58] Devos KM, Gale MD.Genome relationships:the grass model in current research[J]. Plant Cell, 2000(12): 637-646.
文章导航

/