通过对茶树新梢cDNA文库大量随机测序,获得了一个编码亲环素的全长基因,在GenBank登录,登录号为DQ904327。茶树亲环素基因cDNA全长949 bp,其中开放阅读框全长495 bp,编码蛋白质含有164个氨基酸,分子量约为17.47 kD,等电点约为8.54,它具备5’端非编码区的“CAAT”标志及3’端非编码区的”AATAAA”poly-A加尾信号。其推测的氨基酸序列经与26条其他生物亲环素蛋白氨基酸序列进行CLUSTAL W多序列联配并以Neighbor-Joining法进行进化树构建后,发现与水稻和小麦的相似性较高,达到85%以上。根据亲环素基因开放阅读框序列设计引物,构建了原核表达载体pET/Csin-Cyp,并在大肠杆菌BL21(DE3)中成功诱导出了一个分子量为23 kD的亲环素融合蛋白。
A cDNA clone, encoding cyclophilin, obtained by random sequencing of young shoot cDNA library from tea plant (Camellia sinensis). The full-length cDNA of the cyclophilin gene was 949 bp(GenBank accession No. DQ904327), containing a putative ORF of 495 bp, encoding 164 amino acids and the predicted MW were 17.47 kD and pI was 8.54, respectively. A “CAAT” signal in 5′ untranslated region and a polyadenylated signal of “AATAA”poly-A in 3′untranslated regions of cyclophilin mRNAs were found. The presumed amino acid sequences of tea plant were aligned with those of other 26 organisms through CLUSTAL W. The phylogenetic analysis based on the Neighbor-Joining method showed the similarity was greater than 85% between cyclophilin genes of tea plant and Oryza sativa (japonica cultivar-group), Solanum tuberosum, Triticum aestivum etc. Primers were designed on the open reading frame of the cyclephilin gene of tea plant to construct the expressive vector pET/Csin-Cyp. A recombinant protein about 23 kD in the Escherichia coli BL21 (DE3) was induced.
[1] Joseph JD, Heitman J and Means AR. Molecular cloning and characterization of Aspergillus nidulans cyclophilin B[J]. Fungal Genet Biol, 1999, 27(1): 55~66.
[2] Gothel SF and Marahiel MA. Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts[J]. Cell Mol Life Sci, 1999, 55(3): 423~436.
[3] Freskgard PO, Bergenhem N, Jonsson BH, et al. Isomerase and chaperone activity of prolyl isomerase in the folding of carbonic anhydrase[J]. Science, 1992, 258(5081): 466~468.
[4] Handschumacher RE, Harding MW, Rice J, et al. Cyclophilin: a specific cytosolic binding protein for cyclosporin A[J]. Science, 1984, 226(4674): 544~547.
[5] Baker EK, Colley NJ and Zuker CS. The cyclophilin homolog NinaA functions as a chaperone, forming a stable complex in vivo with its protein target rhodopsin[J]. Embo J, 1994, 13(20): 4886~4895.
[6] Xu Q, Leiva MC, Fischkoff SA, et al. Leukocyte chemotactic activity of cyclophilin[J]. J Biol Chem, 1992, 267(17): 11968~11971.
[7] Marivet J, Margis-Pinheiro M, Frendo P, et al. Bean cyclophilin gene expression during plant development and stress conditions[J]. Plant Mol Biol, 1994, 26(4): 1181~1189.
[8] Lhoest GJ, de Jong AP, Meiring HD, et al. Isolation, identification and immunosuppressive activity of a new IMM-125 metabolite from human liver microsomes. Identification of its cyclophilin A-IMM-125 metabolite complex by nanospray tandem mass spectrometry[J]. J Mass Spectrom, 1998, 33(10): 936~942.
[9] Gasser CS, Gunning DA, Budelier KA, et al. Structure and expression of cytosolic cyclophilin/peptidyl-prolyl cis-trans isomerase of higher plants and production of active tomato cyclophilin in Escherichia coli[J]. Proc Natl Acad Sci U S A, 1990, 87(24): 9519~9523.
[10] Saito T, Tadakuma K, Takahashi N, et al. Two cytosolic cyclophilin genes of Arabidopsis thaliana differently regulated in temporal- and organ-specific expression[J]. Biosci Biotechnol Biochem, 1999, 63(4): 632~637.
[11] Kullertz G, Liebau A, Rucknagel P, et al. Stress-induced expression of cyclophilins in proembryonic masses of Digitalis lanata does not protect against freezing/thawing stress[J]. Planta, 1999, 208(4): 599~605.
[12] Oh K, Ivanchenko MG, White TJ, et al. The diageotropica gene of tomato encodes a cyclophilin: a novel player in auxin signaling[J]. Planta, 2006, 224(1): 133~144.
[13] 陈亮, 赵丽萍, 高其康. 茶树新梢cDNA文库的构建和ESTs测序成功率初步分析[J]. 茶叶科学, 2004, 24(1): 18~22.
[14] 陈亮, 赵丽萍, 高其康. 茶树新梢cDNA克隆测序和表达序列标签(ESTs)特性分析[J]. 农业生物技术学报, 2005, 13(1): 21~25.
[15] Chen L, Zhao LP and Gao QK. Generation and analysis of expressed sequence tags from the tender shoots cDNA library of tea plant (Camellia sinensis)[J]. Plant Sci, 2005, 168(2): 359~363.
[16] Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Res, 1997, 25(17): 3389~3402.
[17] Gasteiger E, Gattiker A, Hoogland C, et al. ExPASy: The proteomics server for in-depth protein knowledge and analysis[J]. Nucleic Acids Res, 2003, 31(13): 3784~3788.
[18] Thompson JD, Higgins DG and Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice[J]. Nucleic Acids Res, 1994, 22(22): 4673~4680.
[19] Kumar S, Tamura K and Nei M. MEGA: Molecular Evolutionary Genetics Analysis software for microcomputers[J]. Comput Appl Biosci, 1994, 10(2): 189~191.
[20] Saitou N and Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees[J]. Mol Biol Evol, 1987, 4(4): 406~425.