欢迎访问《茶叶科学》,今天是

茶树胡萝卜素合成关键基因CsLCYbCsLCYe 的克隆与功能鉴定

  • LIU Guanhua1 ,
  • 2 ,
  • 3 ,
  • YANG Mei1 ,
  • 2 ,
  • 3 ,
  • FU Jianyu1 ,
  • 2*
展开
  • 1. 中国农业科学院茶叶研究所,浙江 杭州 310008;2. 农业农村部茶叶质量安全控制重点实验室,浙江 杭州 310008;3. 中国农业科学院研究生院,北京 100081
刘关华,男,主要从事茶树栽培与育种的研究,E-mail: m15079683172@163.com。*通信作者:mybatigoal@mail.tricaas.com

收稿日期: 2019-01-23

  修回日期: 2019-02-13

  网络出版日期: 2019-06-15

基金资助

国家自然科学基金(31470693,31100503)、浙江省自然科学基金(LY18C160006)、中央级公益性科研院所基本科研业务费专项(1610212018004,1610212016017)、中国农业科学院科技创新工程(CAAS-ASTIP-2014-TRICAAS)

Cloning and Functional Analysis of CsLCYb and CsLCYe for Carotene Biosynthesis in Tea Plant (Camellia sinensis

  • 刘关华1 ,
  • 2 ,
  • 3,杨梅1 ,
  • 2 ,
  • 3,付建玉1 ,
  • 2*
Expand
  • 1. Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; 2. Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China; 3. Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Received date: 2019-01-23

  Revised date: 2019-02-13

  Online published: 2019-06-15

摘要

胡萝卜素是茶树叶片色素重要的组分之一,具有参与光合作用、保护光合系统的功能。从茶树叶片转录组中获得两个胡萝卜素合成关键基因:番茄红素-β-环化酶基因(CsLCYb)和番茄红素-ε-环化酶基因(CsLCYe),它们分别含含1515bp和1524bp的开放阅读框,编码504和507个氨基酸残基,与其他植物的同源基因高度相似。利用多基因串联表达证明CsLCYb能够将番茄红素环化成胡萝卜素,而CsLCYe则无此活性。通过ELISA分析胡萝卜素生成效率,发现含有CsLCYb表达载体的菌落能够产生大量胡萝卜素,与阴性对照差异极显著,而含有CsLCYe表达载体的菌落则与阴性对照一致,无胡萝卜素产生。这与茶树中胡萝卜素的种类和含量水平一致,说明茶树主要是通过LCYb途径产生胡萝卜素。qRT-PCR分析表明,CsLCYb在黄化品种中黄2号的不同叶位中表达水平与其黄化程度呈正相关,与胡萝卜素含量水平相一致,并且该基因在正常叶色品种龙井43和中黄2号的相对表达结果也符合这一规律。这充分证明CsLCYb在黄化茶树叶片的胡萝卜素合成和叶色变化过程中扮演了重要的角色。本研究阐明了茶树胡萝卜素合成的关键基因和主要途径,为揭示茶树黄化的分子机理提供了重要的遗传基础。

本文引用格式

LIU Guanhua1 , 2 , 3 , YANG Mei1 , 2 , 3 , FU Jianyu1 , 2* . 茶树胡萝卜素合成关键基因CsLCYbCsLCYe 的克隆与功能鉴定[J]. 茶叶科学, 2019 , 39(3) : 257 -266 . DOI: 10.13305/j.cnki.jts.2019.03.003

Abstract

Carotene, participating in photosynthesis and protecting photosynthetic system, is one of the important pigments of tea leaves. Two key genes [lycopene β-cyclase gene (CsLCYb) and lycopene ε-cyclase gene (CsLCYe)] of carotene biosynthesis in tea plant were cloned from transcriptome. They are 1 515 bp and 1 524 bp in length, and encode 504 and 507 amino acid residues, respectively. Based on sequences alignment, CsLCYb and CsLCYe are highly conserved as compared with the homologous genes from other plants. Multiple-gene tandem expression indicated that CsLCYb can cyclize lycopene to β-carotene while CsLCYe was inactive. The enzymatic activities of the two genes were further confirmed by ELISA method in E. coli. It showed that CsLCYb was able to generate a large amount of carotene, which was significantly different from the negative control. However, no carotene was detected in the colonies with the expression plasmid of pAC-LYC-CsLCYe. The type and content of carotene in tea foliage were consistent with previous reports, which proved that carotene was mainly produced by the LCYb pathway in tea plant. The qRT-PCR analysis revealed that the expression level of CsLCYb in buds and different leaves of Zhonghuang 2 was positively correlated with the degree of chlorisis and the content of carotene. Furthermore, its relative expression in normal cultivar Longjing 43 and chlorisis cultivar Zhonghuang 2 also showed similar pattern. These findings confirmed that CsLCYb plays a key role in the carotene biosynthesis and leaf color changing in tea plant, which also provided an important genetic basis for uncovering the molecular mechanism of chlorisis in tea cultivars.

参考文献

[1] Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids [J]. The Plant Journal, 2008, 54(4): 733-749. [2] Nishio J N. Why are higher plants green?Evolution of the higher plant photosynthetic pigment complement [J]. Plant Cell & Environment, 2010, 23(6): 539-548. [3] Grotewold E. The genetics and biochemistry of floral pigments [J]. Annual Review of Plant Biology, 2006, 57(1): 761-780. [4] Rockwell N C, Su Y S, Lagarias J C. Phytochrome structure and signaling mechanisms [J]. Annual Review of Plant Biology, 2006, 57(1): 837-858. [5] Frank H A, Cogdell R J. Carotenoids in photosynthesis [J]. Photochem Photobiol, 1996, 63(3): 257-264. [6] Lintig J V. Colors with functions: elucidating the biochemical and molecular basis of carotenoid metabolism [J]. Annual Review of Nutrition, 2010, 30(1): 35-56. [7] Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism [J]. Annual Review of Plant Biology, 2005, 56: 165-185. [8] Al-Babil S, Bouwmeester H J. Strigolactones, a novel carotenoid-derived plant hormone [J]. Annual Review of Plant Biology, 2015, 66(1): 161-186. [9] Tanaka R, Tanaka A. Tetrapyrrole biosynthesis in higher plants [J]. Annual Review of Plant Biology, 2007, 58: 321-346. [10] Bach T J. Some new aspects of isoprenoid biosynthesis in plants—a review [J]. Lipids, 1995, 30(3): 191-202. [11] McGarvey D J, Croteau R. Terpenoid metabolism [J]. Plant Cell, 1995, 7(7): 1015-1026. [12] 李莉, 高凌云, 董越, 等. 植物类异戊二烯生物合成相关酶基因研究进展[J]. 浙江师范大学学报(自然科学版), 2008, 31(4): 461-466. [13] 高慧君, 明家琪, 张雅娟, 等. 园艺植物中类胡萝卜素合成与调控的研究进展[J]. 园艺学报, 2015, 42(9): 1633-1648. [14] Cheng A, Lou Y, Mao Y, et al. Plant terpenoids: biosynthesis and ecological functions [J]. Journal of Integrative Plant Biology, 2007, 49(2): 179-186. [15] Cunningham F X Jr, Gantt E. Genes and enzymes of carotenoid biosynthesis in plants [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49(1): 557-583. [16] Takaichi S. Carotenoids in algae: distributions, biosyntheses and functions [J]. Marine Drugs, 2011, 9(6): 1101-1118. [17] Takaichi S. Tetraterpenes: carotenoids [M]∥Merillon J M, Ramawat K G. Berlin: Springer: Natural Products, 2013: 3251-3283. [18] Schnurr G, Misawa N, Sandmann G. Expression, purification and properties of lycopene cyclase from Erwinia uredovora [J]. Biochemical Journal, 1996, 315(3): 869-874. [19] Hisashi H, Norihiko M. Novel approaches and achievements in biosynthesis of functional isoprenoids in Escherichia coli [J]. Applied Microbiology & Biotechnology, 2009, 84(6): 1021-1031. [20] Sugiyama K, Ebisawa M, Yamada M, et al. Functional lycopene cyclase (crua) in cyanobacterium, arthrospira platensis nies-39, and its role in carotenoid synthesis [J]. Plant & Cell Physiology, 2017, 58(4): 831-838. [21] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003, 23-29. [22] Wang L, Yue C, Cao H, et al. Biochemical and transcriptome analyses of a novel chlorophyll-deficient chlorina tea plant cultivar [J]. BMC Plant Biology, 2014, 14: 352. doi.org/10.1186/s12870-014-0352-x. [23] Li N, Yang Y, Ye J, et al. Effects of sunlight on gene expression and chemical composition of light-sensitive albino tea plant [J]. Plant Growth Regulation, 2016, 78(2): 253-262. [24] 邓静, 王远兴, 丁建. 白茶与安吉白茶的研究进展[J]. 食品工业科技, 2013, 34(4): 369-374. [25] Grabherr M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome [J]. Nature Biotechnology, 2011, 29(7): 644-652. [26] Cunningham F X Jr, Sun Z, Chamovitz D, et al. Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium synechococcus sp. strain PCC7942 [J]. Plant Cell, 1994, 6(8): 1107-1121. [27] Francis X C, Barry P, Zairen S, et al. Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation [J]. Plant Cell, 1996, 8(9): 1613-1626. [28] 金应福, 韩莉, 张莎莎, 等. 通过番茄红素环化酶的优化构建β-胡萝卜素高产菌株[J]. 生物工程学报, 2017, 33(11): 1814-1826. [29] Gasteiger E, Hoogland C, Gattiker A, et al. Protein identification and analysis tools on the ExPASy Server [M]∥John M Walker. The proteomics protocols handbook. humana press, 2005: 571-607. [30] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets [J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874. [31] Wei C, Yang H, Wang S, et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality [J]. Proc Natl Acad Sci U S A, 2018, 115(18): E4151-E4158. [32] 虞富莲. 中黄1号、中黄2号的特异性、一致性和稳定性[J]. 中国茶叶, 2016, 38(3): 14-16. [33] Pecker I, Gabbay R, Cunningham F X Jr, et al. Cloning and characterization of the cDNA for lycopene β-cyclase from tomato reveals decrease in its expression during fruit ripening [J]. Plant Molecular Biology, 1996, 30(4): 807-819. [34] Pogson B, McDonald K A, Truong M, et al. Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants [J]. Plant Cell, 1996, 8(9): 1627-1639. [35] 朱跃辉, 姜建国. 类胡萝卜素代谢途径中相关番茄红素环化酶的功能[J]. 中国食品添加剂, 2005(5): 40-43. [36] Ronen G, Cohen M, Zamir D, et al. Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon cyclase is down-regulated during ripening and is elevated in the mutant delta [J]. Plant Journal, 1999, 17(4): 341-351. [37] Norman I K, Elizabeth J J. Carotenoid actions and their relation to health and disease [J]. Molecular Aspects of Medicine, 2005, 26(6): 459-516. [38] Feng L, Gao M J, Hou R Y, et al. Determination of quality constituents in the young leaves of albino tea cultivars [J]. Food Chemistry, 2014, 155(11): 98-104.
文章导航

/