云南省分布着大量的古茶园,被认为是普洱茶的起源。澜沧县景迈古茶园是典型的栽培型古茶园,在古茶园区内大平掌处选择相邻的古茶园、台地茶园和天然林三种利用类型的土壤,进行了土壤养分和土壤酶活性的调查。结果表明:三种类型的土壤都呈明显的酸性,土壤pH在3.80~3.91,茶园土壤的酸度相对更低;三种类型的土壤主要养分含量和酶活性在表层0~20 cm都比下层20~40 cm高,但Mg、Al和K无明显的垂直分布;三者有机质含量都很高,有机质和氮的含量分布为台地茶园<古茶园<天然林,而磷含量为古茶园最高;土壤酶活性的差异与养分的差异不一致,不同的酶活性在三种土壤中的大小规律不一样;土壤pH与金属元素相关性显著,氮元素与其它养分相关性最强,养分与土壤酶活性有显著相关性,尤其是C、N、P和K等主要营养元素。
Ancient tea gardens in Yunnan Province are regarded as the provenance of Pu-erh Tea, and the ancient tea garden (ATG) in Jingmai, Lancang County is a typical example of cultivated ATGs. In order to investigate soil nutrients and enzyme activity, the ATG soil in Jingmai and its neighboring conventional tea garden (CTG) and forest soils were sampled. Soil pH, organic matter (OM), total N (TN), total P (TP), total K (TK), alkaline hydrolyzed N (AN), available P (AP), available K (AK), Ca, Al, Mg, activity of acid phosphatase, catalase, urease and saccharase were analyzed. The results showed that (1) All the soils were acid and at a pH of 3.80~3.91, and pH in tea garden soils was lower than in forest soil. (2), The OM, N, P and soil enzyme activity were rich in top soil (0~20 cm) and poor under 20 cm in different soil layers, while K, Mg and Al showed no obvious difference in different layers. (3) OM was rich in all soils, and the contents of OM, TN and AN were CTG < ATG < forest, while TP and AP were richest in ATG. (4) Enzyme activity showed different distribution patterns in the three soils. (5) Soil pH correlated with metal elements, N existed the most significant correlation with other nutrients, and soil nutrients did certain correlation with soil enzymes, especially N, C, P, K.
[1] 许玫, 王平盛, 唐一春, 等. 云南古茶树群落的分布和多样性[J]. 中国茶叶, 2005(6): 12~13.
[2] 齐丹卉, 郭辉军, 崔景云, 等. 云南澜沧县景迈古茶园生态系统植物多样性评价[J]. 生物多样性, 2005, 13(3): 221~231.
[3] 许玫, 王平盛, 唐一春, 等. 中国云南古茶树群落的分布与多样性[J]. 西南农业学报, 2006, 10(1): 123~126.
[4] 陈红伟, 张俊, 王平盛, 等. 澜沧景迈古茶山考察与研究[J]. 茶叶通报, 2003, 25(3): 105~106.
[5] 安韶山, 黄懿梅, 李壁成, 等. 用典范相关性分析研究宁南宽谷丘陵区不同土地利用方式土壤酶活性与土壤肥力因子的关系[J]. 植物营养与肥料学报, 2005, 11(15): 704~709.
[6] 李跃林, 李志辉, 彭少麟, 等. 典范相关分析在桉树人工林地土壤酶活性与营养元素关系研究中的应用[J]. 应用与环境生物学报, 2002, 8(5): 544~549.
[7] 耿玉清, 白翠霞, 赵铁蕊, 等. 北京八达岭地区土壤酶活性及其与土壤肥力的关系[J]. 北京林业大学学报, 2006, 28(5): 7~11.
[8] Wan FX, Chen P.Soil enzyme activities under Agroforestry systems in Northern Jiangsu Province[J]. Forestry Studies in China, 2004, 6(2): 21~26.
[9] 国家林业局. 森林土壤分析方法(LY/T 1210~1275~1999)[M]. 北京: 标准出版社, 1999.
[10] 关松荫. 土壤酶及其研究法[M]. 北京: 中国农业出版社, 1986.
[11] 哈兹耶夫. 土壤酶活性[M]. 郑元洪, 周礼凯, 张德生译. 北京: 科学出版社, 1980.
[12] 周礼恺. 土壤酶学[M]. 北京: 科学出版社, 1987.
[13] 李忠佩. 亚热带茶园土壤的某些生物化学性状研究[J]. 热带亚热带土壤科学, 1997, 6(3): 162~170.
[14] 王晓萍, 阮建云, 韩文炎, 等. 茶树钾营养特性的研究[J]. 作物学报, 1995, 21(3): 324~329.
[15] 朱永兴, 陈福兴. 南方丘陵红壤茶园的镁营养[J]. 茶叶科学, 2000, 20(2): 95~100.
[16] 韩文炎, 石元值, 马立峰. 茶园钾素研究进展与施钾技术[J]. 中国茶叶, 2004, 26(1): 22~24.
[17] 沙丽清, 郭辉军. 云南古茶资源有效保护与合理利用. 见: 王如松主编. 循环、整合、和谐-第二届全国复合生态与循环经济学术讨论会论文集. 北京: 科技出版社, 2005: 362~365.
[18] 张一平, 刘洋. 云南古茶园与常规茶园小气候特征比较研究[J]. 华南农业大学学报, 2005, 26(24): 17~24.
[19] 沈有信, 周文君, 刘文耀, 等. 云南松根际与非根际磷酸酶活性与磷的有效性[J]. 生态环境, 2005, 14(1): 91~93.
[20] Wright AL, Reddy KR.Phosphorus loading effects on extracellular enzyme activity in everglades wetland soils[J]. Soil Science Society of America, 2001, 65: 588~595.
[21] 高祥斌. 森林土壤化学性质与土壤酶活性典型相关分析[J]. 林业科技, 2007, 32(1): 11~13.
[22] 俞慎卜, 何振立, 张荣光, 等. 红壤茶树根层土壤基础呼吸作用和酶活性[J]. 应用生态学, 2003, 14(2): 179~183.