欢迎访问《茶叶科学》,今天是

利用多态性片段长度扩增(AFLP)法对印度大吉岭茶树遗传多样性的研究

  • Rajan Kumar Mishra ,
  • Swati Sen-Mandi
展开
  • 印度 Bose 研究所植物学系, 加尔各答 700 009, 印度
RAJAN KUMAR MISHRA (1975-- ), male, Indian, Ph.D, in Molecular Biology, Lecturer in Biotechnology, IILM College of engg & Technology, Greter NOIDA, U.P.. E-mail: rajanm2002@rediffmail.com

收稿日期: 2003-12-08

  网络出版日期: 2019-09-16

Genetic Diversity Estimates for Darjeeling Tea Clones Based on Amplified Fragment Length Polymorphism Markers

  • Rajan Kumar Mishra ,
  • Swati Sen-Mandi
Expand
  • Botany Department, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Calcutta 700 009, INDIA

Received date: 2003-12-08

  Online published: 2019-09-16

摘要

大吉岭地区的茶树因其特殊的地理环境而具有遗传特点。其不同品系的基因组DNA指纹分析证明有很高的多态性,所以适合以AFLP来研究其无性品系茶树的基因。聚类分析显示,其遗传系统树图谱与先前以形态特征为依据的分类结果一致。大吉岭茶树各品系间的遗传相似性达到70%。在中国类型品种中遗传变异程度较大。在三个种质类型(viz. China, Assam and Cambod type)之间及内部的变异程度分别为63%和36%。

本文引用格式

Rajan Kumar Mishra , Swati Sen-Mandi . 利用多态性片段长度扩增(AFLP)法对印度大吉岭茶树遗传多样性的研究[J]. 茶叶科学, 2004 , 24(2) : 86 -92 . DOI: 10.13305/j.cnki.jts.2004.02.003

Abstract

Tea plants growing in Darjeeling area, in addition to all other factors described below, are unique due to their typical geographical isolation. DNA fingerprints revealed a high degree of polymorphism in genomes of different clones, and this demonstrated the suitability of using the Amplified Fragment Length Polymorphism (AFLP) method for genome analysis between closely related plants, such as vegetatively propagated (clonal) populations of tea. Cluster analysis exhibited a dendrogram that closely matched with earlier clonal grouping based on morphological characters. The extent of genetic relatedness between the clones was found to be at 70% level. Results also showed that the genetic variation (Hs) was higher among China type. The variation between and within the three types of clonal populations studied (viz. China, Assam and Cambod type) are 63% and 36% respectively.

参考文献

[1] Dodd, R. S.; Kashani, N. and Afzal-RafII, Z. Population diversity and evidence of introgression among the black oaks of California. USDA Forest Service General Technical Report PSW-GTR-184, 2002, p. 775-785.
[2] Ellis, R.P.; Mcnicol J.W.; Baird, E.; Booth, A.; Lawrence, P.; Thomas, B. and Powell, W. 1997. The use of AFLPs to examine genetic relatedness in barley. Molecular Breeding, 3: 359-369.
[3] Fuentes, J.L.; Escobar, F.; Alvarez, A.; Gallego, G.; Duque, M.C.; Ferrer, M.; Deus, J.E. and Tohme, J.M. 1999. Analysis of genetic diversity in Cuban rice varieties using isozyme, RAPD and AFLP markers. Euphytica, 109: 107-115.
[4] Janssen, P.; Coopman, R.; Huys, G.; Swings, J.; Bleeker, H.; Vos, P.; Zabeau, M. and Kersters, K. 1996. Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy. Microbiology, 142: 1881-1893.
[5] Jaccard, A. 1908. Nouvelies researchers sur la distribution florale. Bulletm la Socete Vaudoise de Sciences Naturalles, 44: 223-270.
[6] Joshi, S.P.; Ranjekar, P.K. and Gupta, V.S. 1999. Molecular marker in plant genome analysis. Current Science, 77: 230-240.
[7] Kaundun, S.S.; Zhyvoloup, A. and Park, Y-G. 2000. Evaluation of genetic diversity among elite tea (Camellia sinensis var. sinensis) accessions using RAPD markers. Euphytica, 115: 7-16.
[8] King, L.M. and Schaal, B.A. 1989. Ribosomal DNA variation and distribution in Rudbeckia missouriensis. Evolution, 42: 1117-1119.
[9] Marsolais, J.V.; Pringle, J.S. and White, B.N. 1993. Assessment of random amplified polymorphic DNA (RAPD) as genetic marker for determining the origin of inter specific lilac hybrids. Taxon, 42: 531-537.
[10] Loh, J.P.; Kiew, R.; Kee, A.; Gan, L. and Gan, Y.Y. 1999. Amplified Fragment Length Polymorphism (AFLP) provides molecular markers for the identification of Caladium bicolor Cultivars. Annals of Botany, 84: 155-161.
[11] Mackill, D.J.; Zhang, Z.; Redona, E.D. and Colowit, P.M. 1996. Level of polymorphism and genetic mapping of AFLP markers in rice. Genome, 39: 969-977.
[12] Negi, M.S.; Singh, A. and Laksmikumaran, M. 2000. Genetic variation and relationship among and within Withania species as revealed by AFLP marker. Genome, 43: 975-980.
[13] Nei, M. and Li, W.H. 1979. Mathematical model for studying genetical variation in terms of restriction endonucleases. Proceedings National Academic Sciences, U. S. A., 74: 5267-5273.
[14] Paul, S; Wachira, F.N.; Powel, W. and Waugh, R. 1997. Diversity and genetic differentiation among populations of India and Kenyan tea (Camellia sinensis (L) O. Kuntze) revealed by AFLP markers. Theoretical and Applied Genetics, 94: 255-263.
[15] Sambrook, J.; Fritsch, E.F. and Maniatis, T. 1989. Molecular cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbour laboratory Press, Cold Spring Harbour, NY.
[16] Scrotch, B.P.; Tibang, J. and Nienhuis, J. 1992. Analysis of genetic relationship using the RAPD marker data. In: Proceedings of Symposium on Application of RAPD Technology of Plant Breeding, Minneapolis, Minn Crop Science Society of America, Medison, Wisconsin, 26-30.
[17] Shannon, C.E. 1948. A mathematical theory of communication. Bell. Systemic Technical Journal, 27: 379-434.
[18] Tel-Zur, N.; Abbo, S.; Myslabodski, D. and Mizrahi, Y. 1999. Modified CTAB Procedure for DNA Isolation from Epiphytic Cacti of the Genera Hylocereus and Selenicereus (Cactaceae). Plant Molecular Biology Reporter, 17: 249–254.
[19] Vos, P.; Hogers, R.; Bluker, M.; Reijans, M.; Van de Lee, T.; Horms, M.; Frijters, A.; Pot, J.; Peleman, J.; Kuiper, M. and Zabeau, M. 1995. AFLP-a new technique for DNA fingerprinting. Nucleic Acids Research, 23: 4407-4414.
[20] Wight, W. 1959. Nomenclature & Classification of the tea plant. Nature, 183: 1726-1728
[21] Wilhm, J.L. and Dormis, T.C. Biological parameters for quality criteria. 1968. Bioscience, 18: 477-481.
[22] Wood, D.J. and Barua, D.N. 1958. Species hybrids of Tea. Nature, 181: 1674-1675.
Zhu, J.; Gale, M.D.; Quarrie, S.; Jackson, M.T. and Bryan, G.J. 1998. AFLP marker for the study of rice biodiversity. Theoretical and Applied Genetics, 96: 602-611.
文章导航

/