为探明萎凋机结构参数对萎凋性能的影响特性,通过流体力学软件进行萎凋环境的数值模拟分析,以无量纲化后的温度场综合指标作为萎凋性能优劣的评判指标,并采用响应面法(RSM)对影响萎凋性能的3个因素(萎凋机层高x1、萎凋机与萎凋房空间距x2、气路位置x3)进行优化。结果表明,各因素对萎凋品质的影响重要性顺序依次为:气路位置>萎凋机层高>空间距;当萎凋机层高、空间距、气路位置分别为0.1、0.1、1.496βm时,红茶萎凋机温度场性能最优,所建模型决定系数为0.968β3,调整后的决定系数为0.927β5,标准偏差为0.061,最优方案理论值和实际值分别为:0.951β9和0.909β6。CFD和RSM融合分析方法,适用于红茶萎凋机的性能参数优化。
In order to ascertain the influence of the structural parameters of the withering machine on withering performance, the numerical simulation analysis of withering environment was carried out by the fluid mechanics software. The temperature-integrated index after the dimensionless was used as the evaluation index of the withering performance and the response surface methodology (RSM) was used to optimize the three factors (the withering layer height x1, the withering machine and the withering room space x2, and the gas position x3) that affect withering quality. The result shows that the order of importance of each factor on the withering quality was as follows: gas path position, withering machine layer height, space distance. The best set for temperature field performance of the black tea withering machine were x1=10βcm, x2=10βcm, x3 =149.6βcm. The model’s R2=0.968β3, adjR2=0.927β5, the standard deviation was 0.061. The theoretical and actual values of the optimal scheme were: 0.951β9 and 0.909β6, respectively. The CFD and RSM fusion analysis method was suitable for optimizing the performance parameters of the black tea withering machine.
[1] Liang G Z, Dong C W, Hu B, et al.Prediction of moisture content for congou black tea withering leaves using image features and nonlinear method[J]. Scientific Reports, 2018, 8(1): 7854. DOI: 10.1038/s41598-018-26165-2.
[2] 黄藩, 董春旺, 朱宏凯, 等. 红茶萎凋中鲜叶理化变化及工艺技术研究进展[J]. 中国农学通报, 2014, 30(27): 275-281.
[3] 覃事永, 安霆, 董春旺. 工夫红茶加工装备研究现状[J]. 中国茶叶加工, 2018(4): 43-47.
[4] 江用文, 滑金杰, 袁海波. 我国红茶产业现状分析与前景展望[J]. 中国茶叶加工, 2018(4): 5-10.
[5] 张起勋, 于海业, 张忠元, 等. 利用CFD模型研究日光温室内的空气流动[J]. 农业工程学报, 2012, 28(16): 166-171.
[6] 刘素惠. 基于CFD的乌龙茶做青环境模拟与优化探讨[D]. 福州: 福建农林大学, 2012.
[7] 陈霖熙. 白茶连续化生产线建立及关键工艺试验研究[D]. 福州: 福建农林大学, 2014.
[8] 赵爱凤. 萎凋环境因子对白茶品质形成的影响及控制技术探讨[D]. 福州: 福建农林大学, 2008.
[9] 王钦明. 基于FLUENT的茶叶风选机流场模拟及结构改进研究[D]. 昆明: 昆明理工大学, 2017.
[10] Box G,Wilson K B.On the experimental attainment of optimum conditions[J]. Journal of the Royal Statistical Society Series B:Statistical Methodology, 1951(1): 1-45.
[11] Chen W C, Kurniawan D.Process parameters optimization for multiple quality characteristics in plastic injection molding using Taguchi method, BPNN, GA, and hybrid PSO-GA[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(8): 1583-1593.
[12] Desai K M, Survase S A, Saudagar P S, et al.Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: Case study of fermentative production of scleroglucan[J]. Biochemical Engineering Journal, 2008, 41(3): 266-273.
[13] Guo W L, Zhang Y B, Lu J H, et al.Optimization of fermentation medium for nisin production from Lactococcus lactis subsp. lactis using response surface methodology (RSM) combined with artificial neural network-genetic algorithm (ANN-GA)[J]. African Journal of Biotechnology, 2010, 9(38): 6264-6272.
[14] Pilkington J L, Preston C, Gomes R L.Comparison of response surface methodology (RSM) and artificial neural networks (ANN) towards efficient extraction of artemisinin from Artemisia annua [J]. Industrial Crops and Products, 2014, 58: 15-24. DOI: 10.1016/j.indcrop.2014.03.016.
[15] 文鹏程, 王军, 任发政, 等. 牧区奶干渣组合式发酵剂响应面法优化[J]. 农业机械学报, 2014, 45(8): 241-247.
[16] 董春旺, 赵杰文, 朱宏凯, 等. 基于RSM和BP-AdaBoost-GA的红茶发酵性能参数优化[J]. 农业机械学报, 2017, 48(5): 335-342.
[17] 滑金杰, 袁海波, 江用文, 等. 响应面设计优化工夫红茶萎凋工艺参数[J]. 江苏农业科学, 2015, 43(10): 362-366.
[18] 滑金杰. 工夫红茶萎凋工序中鲜叶呼吸作用及理化特性的基础研究[D]. 北京: 中国农业科学院, 2014.
[19] 冯呈艳. 茶鲜叶原料的主要物料学特性的研究及应用[D]. 武汉: 华中农业大学, 2013.
[20] 张哲. 茶叶物理特性及吸湿解吸平衡规律研究[D]. 武汉: 华中农业大学, 2012.
[21] 殷鸿范. 茶叶的热物理特性[J]. 茶叶科学, 1985, 5(1): 1-6.
[22] 石贤权. 茶叶的热力学特性分析[J]. 茶叶, 1984(3): 32-35.
[23] 董春旺, 叶阳, 江用文, 等. 工夫红茶可视化富氧发酵机设计及试验研究[J]. 茶叶科学, 2015, 35(4): 370-376.
[24] 何昌德, 董春旺, 吴锋. 基于虚拟正交试验的汽车转向盘骨架优化设计的研究[J]. 汽车工程, 2013, 35(4): 326-330.