欢迎访问《茶叶科学》,今天是

我国典型茶区化学氮肥施用与生产运输过程的温室气体排放量估算

  • 王峰 ,
  • 陈玉真 ,
  • 吴志丹 ,
  • 江福英 ,
  • 张文锦 ,
  • 翁伯琦 ,
  • 尤志明
展开
  • 1. 福建省农业科学院茶叶研究所,福建 福安 355015;
    2. 福建茶树及乌龙茶加工科学观测站,福建 福安 355015;
    3. 福建省红壤山地农业生态过程重点实验室,福建 福州 350013
王峰,男,助理研究员,主要从事茶树栽培与环境生态方面的研究,82458lin@163.com。

收稿日期: 2019-06-12

  修回日期: 2019-07-29

  网络出版日期: 2020-04-20

基金资助

国家重点研发计划(2016YFD0200903)、福建省公益类科研院所专项(2018R1012-2,2018R1012-1)、福建省科技计划项目星火项目(2017S0049)、福建省农业科学院科技创新团队(STIT2017-1-3)

Estimation of Greenhouse Gas Emissions from Fertilization, Production and Transportation of Synthetic Nitrogen for Tea Garden in Typical Region of China

  • WANG Feng ,
  • CHEN Yuzhen ,
  • WU Zhidan ,
  • JIANG Fuying ,
  • ZHANG Wenjin ,
  • WENG Boqi ,
  • YOU Zhiming
Expand
  • 1. Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu′an 355015, China;
    2. Scientific Observing and Experimental Station of Tea Tree and Oolong Tea Processes in Fujian, Ministry of Agriculture, Fu′an 355015, China;
    3. Fujian Province Key Laboratory of Agro-Ecological Processes in Hilly Red Soil, Fuzhou 350013, China

Received date: 2019-06-12

  Revised date: 2019-07-29

  Online published: 2020-04-20

摘要

基于相关统计数据和文献调研方法,估算了我国14个典型茶区中化学氮肥施用、生产及运输过程中的温室气体排放量。结果表明,化学氮肥施用导致的土壤N2O直接排放和生产过程中的温室气体排放是茶园化学氮肥消费带来的温室气体主要排放源;14个典型茶区消费的化学氮肥产生的温室气体排放量(以CO2排放当量计算)为16.81~344.80万t·a-1,其中贵州、云南、湖北和四川4省的茶园消费的化学氮肥带来的温室气体排放量较高,均超过200万t·a-1,占全部区域温室气体排放量的59.98%;单位面积温室气体排放量为3.22~9.76 t·hm-2·a-1,单位产量温室气体排放量为2.10~12.96 t·t-1·a-1、单位产值温室气体排放量0.39~1.90 t·万元-1·a-1;总体而言,贵州、云南、湖北、湖南和四川5省的茶园消费的化学氮肥带来的温室气体排放量、单位面积温室气体排放量、单位产量温室气体排放量和单位产值温室气体排放量较高,福建、河南省及重庆市3个茶区相对较低。在茶园化学氮肥施用量控制为300 kg·hm-2和450 kg·hm-2两种情景下,茶园生态系统温室气体减排总量为617.07万t·a-1和228.94万t·a-1,减排潜力为34.12%和12.66%,减排潜力较大的区域主要有湖北、四川、贵州、湖南和江西等5省。

本文引用格式

王峰 , 陈玉真 , 吴志丹 , 江福英 , 张文锦 , 翁伯琦 , 尤志明 . 我国典型茶区化学氮肥施用与生产运输过程的温室气体排放量估算[J]. 茶叶科学, 2020 , 40(2) : 205 -214 . DOI: 10.13305/j.cnki.jts.2020.02.007

Abstract

In this research, the amount of greenhouse gas emissions from fertilization, production and transportation of synthetic nitrogen for tea garden in typical region of China was assessed based on the analysis of statistical data using a data mining method. The results show that direct N2O emissions from soil and greenhouse gas emissions (CO2 emission equivalents) from the production of synthetic N fertilizers were the main sources of greenhouse gas emissions from synthetic N fertilization in tea garden. In 14 typical regions, the total greenhouse gas emissions from synthetic N fertilization were 168.1-3 448.0 kt CO2 equivalent per year. And Guizhou, Yunan, Hubei and Sichuan were the top four provinces with high greenhouse gas emissions from synthetic N fertilization. Over 2 000 kt CO2 equivalent per year occurred in each province, which accounted for 59.98% of the total emissions. The greenhouse gas emissions per unit area, per yield and per output value was 3.22-9.76 t CO2 equivalent per hectare, 2.10-12.96 t CO2 equivalent per ton of dry semifinished tea and 0.39-1.90 t CO2 equivalent per 10 000 yuan. In general, the total greenhouse gas emissions, emissions per unit area, per yield and per output value from synthetic N fertilization were mainly concentrated in Guizhou, Yunan, Hubei, Hunan and Sichuan provinces, and the relatively low total emissions and emission intensity were happened in Fujian, Henan provinces and Chongqing city. It was concluded that reducing the synthetic N application rate for tea garden in China to a reasonable level of 300 kg·hm-2 and 450 kg·hm-2 could greatly reduce the emission of greenhouse gases. And the estimated mitigation potential of greenhouse gas emissions for these provinces were 6 170.7, 2 289.4 kt CO2 equivalent per year, and reduce the total greenhouse gas emissions by 34.12% and 12.66%. Notably, Hubei, Sichuan, Guizhou, Hunan and Jiangxi provinces were the leaders of the mitigation potential of greenhouse gas emissions, and these areas should focus on reducing greenhouse gas emissions.

参考文献

[1] 倪康, 廖万有, 伊晓云, 等. 我国茶园施肥现状与减施潜力分析[J]. 植物营养与肥料学报, 2019, 25(3): 421-432.
Ni K, Liao W Y, Yi X Y, et al.Fertilization status and reduction potential in tea plantations of China[J]. Journal of Plant Nutrition and Fertilizer, 2019, 25(3): 421-432.
[2] 阮建云, 吴洵, 石元值, 等. 中国典型茶区养分投入与施肥效应[J]. 土壤肥料, 2001(5): 9-13.
Ruan J Y, Wu X, Shi Y Y, et al.Nutrient input and evaluation of fertilization efficiency in typical tea areas of China[J]. Soil and Fertilizer Sciences in China, 2001(5): 9-13.
[3] 吴洵, 茹国敏. 茶树对氮肥的吸收和利用[J]. 茶叶科学, 1986, 6(2): 15-24.
Wu X, Ru G M.Uptaking and utilizing nitrogen fertilizer by tea plant[J]. Journal of Tea Science, 1986, 6(2): 15-24.
[4] Qin P, Qi Y C, Dong Y S, et a1. Soil nitrous oxide emissions from a typical semiarid temperate steppe in inner Mongolia: effects of mineral nitrogen fertilizer levels and forms[J]. Plant Soil, 2011, 342(1): 345-357.
[5] 刘宗岸, 杨京平, 杨正超, 等. 苕溪流域茶园不同种植模式下地表径流氮磷流失特征[J]. 水土保持学报, 2012, 26(2): 29-32, 44.
Liu Z A, Yang J P, Yang Z C, et al.Characteristics of nitrogen and phosphorus losses with surface runoff in tea field of Tiaoxi watershed under different planting patterns[J]. Journal of Soil and Water Conservation, 2012, 26(2): 29-32, 44.
[6] 王峰, 陈玉真, 吴志丹, 等. 酸性茶园土壤氨挥发及其影响因素研究[J]. 农业环境科学学报, 2016, 35(4): 808-816.
Wang F, Chen Y Z, Wu Z D, et al.Ammonia volatilization and its influencing factors in tea garden soils[J]. Journal of Agro-Environment Science, 2016, 35(4): 808-816.
[7] Syakila A, Kroeze C.The global nitrous oxide budget revisited[J]. Greenhouse Gas Measurement Management, 2011, 1(1): 17-26.
[8] 张倩, 宗良纲, 曹丹, 等. 江苏省典型茶园土壤酸化趋势及其制约因素研究[J]. 土壤, 2011, 43(5): 751-757.
Zhang Q, Zong L G, Cao D, et al.Study on soil acidification and its restrictive factors of typical tea garden in Jiangsu province[J]. Soils, 2011, 43(5): 751-757.
[9] Xue D, Yao H, Huang C.Study on soil microbial properties and enzyme activities in tea gardens[J]. Journal of Soil Water Conservation, 2005, 19: 84-87.
[10] Han W Y, Xu J M, Wei K, et al.Estimation of N2O emission from tea garden soils, their adjacent, vegetable garden and forest soils in eastern China[J]. Environmental Earth Sciences, 2013, 70(6): 2495-2500.
[11] Huang Y, Long X E, Chapman S J, et al.Acidophilic denitrifiers dominate the N2O production in a 100-year-old tea orchard soil[J]. Environmental Science & Pollution Research International, 2015, 22(6): 4173-4182.
[12] Huang Y, Li Y Y, Yao H Y.Nitrate enhances N2O emission more than ammonium in a highly acidic soil[J]. Journal of Soils Sediments, 2014, 14(1): 146-154.
[13] Akiyama H, Yan X, Yagi K.Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan: Summary of available data[J]. Soil Science & Plant Nutrition, 2006, 52(6): 774-787.
[14] Li Y, Zheng X, Fu X, et al.Is green tea still ‘green’?[J]. Geo Geography Environment, 2016, 3(2): e00021. doi: 10.1002/geo2.21.
[15] Zou J, Lu Y, Huang Y.Estimates of synthetic fertilizer N-induced direct nitrous oxide emission from Chinese croplands during 1980-2000[J]. Environmental Pollution, 2010, 158(2): 631-635.
[16] Yan W, Yang L, Wang F, et al.Riverine N2O concentrations, exports to estuary and emissions to atmosphere from the Changjiang River in response to increasing nitrogen loads[J]. Global Biogeochemical Cycles, 2012, 26(4): 1-15.
[17] 陈舜, 逯非, 王效科. 中国氮磷钾肥制造温室气体排放系数的估算[J]. 生态学报, 2015, 35(19): 6371-6383.
Chen S, Lu F, Wang X K.Estimation of greenhouse gases emission factors for China's nitrogen, phosphate, and potash fertilizers[J]. Acta Ecologica Sinica, 2015, 35(19): 6371-6383.
[18] 柴如山, 王擎运, 叶新新, 等. 我国典型省份小麦和玉米农田化学氮肥施用与生产运输过程的温室气体排放量估算[J]. 农业环境科学学报, 2019, 38(3): 707-713.
Chai R S, Wang Q Y, Ye X X, et al.Estimation of greenhouse gas emissions from production, transportation and fertilization of synthetic nitrogen for wheat and maize in typical provinces of China[J]. Journal of Agro-Environment Science, 2019, 38(3): 707-713.
[19] 李锋. 我国小麦生产主要能耗投入品相关温室气体排放研究[J]. 农业环境科学学报, 2014, 33(5): 1041-1049.
Li F.Greenhouse gas emissions from major energy consumption in wheat production in China[J]. Journal of Agro-Environment Science, 2014, 33(5): 1041-1049.
[20] 田展, 牛逸龙, 孙来祥, 等. 基于DNDC模型模拟气候变化影响下的中国水稻田温室气体排放[J]. 应用生态学报, 2015, 26(3): 793-799.
Tian Z, Niu Y L, Sun L X, et al.China's rice field greenhouse gas emission under climate change based on DNDC model simulation[J]. Chinese Journal of Applied Ecology, 2015, 26(3): 793-799.
[21] Cui Z, Yue S, Wang G, et al.Closing the yield gap could reduce projected greenhouse gas emissions: a case study of maize production in China[J]. Global Change Biology, 2013, 19(8): 2467-2477.
[22] 农业部种植业管理司. 2017年全国各产茶省茶园面积、产量和产值统计[J]. 中国茶叶, 2018, 40(6): 27.
Department of Crop Management, Ministry of Agriculture. Statistic date on the area, yield and output value of tea plantations in various tea producing provinces in China in 2017[J]. China Tea, 2018, 40(6): 27.
[23] Gao B, Ju X T, Zhang Q, et al.New estimates of direct N2O emissions from Chinese croplands from 1980 to 2007 using localized emission factors[J]. Biogeosciences, 2011, 8(10): 3011-3024.
[24] Zhang W F, Dou Z X, He P, et al.New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China[J]. Proceedings of the National Academy of Sciences, 2013, 110(21): 8375-8380.
[25] The National Greenhouse Gas Inventories Programme IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories[M]. Hayama: Institute for Global Environmental Strategies, 2006.
[26] 伊晓云, 马立锋, 石元值, 等. 茶叶专用肥减肥增产增收效果研究[J]. 中国茶叶, 2017, 39(4): 26-27.
Yin X Y, Ma L F, Shi Y Z, et al.Study on the effect of special fertilizer for tea on reducing weight, increasing production and increasing income[J]. China Tea, 2017, 39(4): 26-27.
[27] 全国农业技术推广服务中心. 茶叶绿色生产模式及配套技术[M]. 北京: 中国农业科学技术出版社, 2016: 119-122.
National agricultural technology popularization service center. Tea green production mode and supporting technology [M]. Beijing: China agricultural Science and Technology Press, 2016: 119-122.
[28] 营娜, 麻金继, 周丰, 等. 中国农田肥料N2O直接和间接排放重新评估[J]. 环境科学学报, 2013, 33(10): 2828-2839.
Ying N, Ma J J, Zhou F, et al.Re-quantification of the direct/indirect N2O emissions from agricultural fertilizer in China[J]. Acta Scientiae Circumstantiae, 2013, 33(10): 2828-2839.
[29] 蒋光福, 张稳, 李昕, 等. 1980—2010年中国和印度农田化肥氮源氧化亚氮排放的比较[J]. 农业环境科学学报, 2016, 35(9): 1807-1815.
Jiang G F, Zhang W, Li X, et al.Comparison of synthetic fertilizer N-induced direct nitrous oxide emissions from croplands between China and India during 1980-2010[J]. Journal of Agro-Environment Science, 2016, 35(9): 1807-1815.
[30] 罗文兵, 邓明君, 向国成. 我国棉花种植化肥施用的碳排放时空演变及减排潜力[J]. 经济地理, 2015, 35(9): 149-156.
Luo W B, Deng M J, Xiang G C.Study on the space-time evolution and reduction potential of carbon emission in Chinese cotton planting fertilization[J]. Economic Geography, 2015, 35(9): 149-156.
[31] 徐洋, 杨帆, 张卫峰, 等. 2014—2016年我国种植业化肥施用状况及问题[J]. 植物营养与肥料学报, 2019, 25(1): 11-21.
Xu Y, Yang F, Zhang W F, et al.Status and problems of chemical fertilizer application in crop plantations of China from 2014 to 2016[J]. Plant Nutrition and Fertilizer Science, 2019, 25(1): 11-21.
[32] 张振梅, 石元值, 马立锋, 等. 采摘标准与施氮水平对茶树春茶产量、品质及氮素利用的影响[J]. 茶叶科学, 2015, 34(5): 506-514.
Zhang Z H, Shi Y Z, Ma L F, et al.Effect of different plucking standards and nitrogen application levels on the spring shoot yield, quality-related chemical compounds and N utilization efficiency of tea plants[J]. Journal of Tea Science, 2015, 34(5): 506-514.
[33] 马立锋, 苏孔武, 黎金兰, 等. 控释氮肥对茶叶产量、品质和氮素利用效率及经济效益的影响[J]. 茶叶科学, 2015, 34(4): 354-362.
Ma L F, Su K W, Li J L, et al.Effects of controlled-release nitrogen fertilizer on tea yield, quality, nitrogen use efficiency and economic benefit[J]. Journal of Tea Science, 2015, 34(4): 354-362.
[34] 吴志丹, 尤志明, 江福英, 等. 配施有机肥对茶园土壤性状及茶叶产质量的影响[J]. 土壤, 2016, 47(5): 874-879.
Wu Z D, Y Z M, Jiang F Y, et al. Effects of combined application of organic manure and chemical fertilizer on properties of tea garden soil and the yield and quality of tea[J]. Soils, 2016, 47(5): 874-879.
文章导航

/