欢迎访问《茶叶科学》,今天是

香茅草挥发物及其主要成分对3种茶树病原真菌的抑制性研究

  • 杨文 ,
  • 刘惠芳 ,
  • 陈瑶 ,
  • 苏生 ,
  • 李天兴 ,
  • 刘垚果 ,
  • 周玉锋
展开
  • 1. 贵州省农业科学院茶叶研究所,贵州 贵阳 550006;
    2. 贵州省农业科学院草业研究所,贵州 贵阳 550006;
    3. 贵州大学茶学院,贵州 贵阳 550025
杨文,男,副研究员,主要从事茶树病虫害及其防控方面的研究,E-mail:yangwen3409@126.com。

收稿日期: 2019-07-18

  修回日期: 2019-08-20

  网络出版日期: 2020-04-20

基金资助

国家现代农业(茶叶)产业技术体系建设专项资金项目(CARS-19)、贵州省农业攻关项目(黔科合支撑[2016]2550号、黔科合支撑[2018]2551号)、黔农科院自主创新科研专项字(2014)009、黔农科院青年基金[2017]14号

Volatile Components from Cymbopogon citratus and the Activity Research on Their Main Elements Against Three Fungal Pathogens of Tea

  • YANG Wen ,
  • LIU Huifang ,
  • CHEN Yao ,
  • SU Sheng ,
  • LI Tianxing ,
  • LIU Yaoguo ,
  • ZHOU Yufeng
Expand
  • 1. Guizhou Tea Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China;
    2. Guizhou Institute of Pratacultural, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China;
    3. Tea College of Guizhou University, Guiyang 550025, China

Received date: 2019-07-18

  Revised date: 2019-08-20

  Online published: 2020-04-20

摘要

采用固相微萃取和气相-质谱联用仪检测了香茅草鲜草茎和叶的挥发成分,分析确定了香茅草鲜草茎和叶中共51种挥发成分,主要成分为柠檬醛[包含(E)-柠檬醛与(Z)-柠檬醛]和香叶醇,茎中相对含量分别为81.39%(58.48%和22.91%)和4.79%;叶片中相对含量分别为78.50%(51.63%和26.87%)和3.68%。采用菌丝生长速率法,研究了柠檬醛和香叶醇分别对茶树炭疽病病原菌(Colletotrichum gloeosporioides)、轮斑病病原菌(Pestalotiopsis theae)、褐芽病病原菌(Phoma adianticola)的抑制活性。活性初测结果表明,500 mg·L-1处理96 h,两种成分对供试轮斑病病原菌抑制率均低于56%;而对供试茶炭疽病和褐芽病病原菌的抑制率均可达100%。进一步活性测试结果表明,柠檬醛对茶炭疽病和褐芽病病原菌的抑制中浓度(EC50)值分别为(230.56±3.49) mg·L-1和(124.79±10.29) mg·L-1;香叶醇对两种病原菌的EC50值分别为(238.38±5.51) mg·L-1和(115.38±10.96) mg·L-1。本研究初步明确了香茅草鲜草挥发成分及其对茶树病害病原菌抑制活性的主要物质基础,为茶园种植香茅草具有潜在防病害作用提供了理论依据。

本文引用格式

杨文 , 刘惠芳 , 陈瑶 , 苏生 , 李天兴 , 刘垚果 , 周玉锋 . 香茅草挥发物及其主要成分对3种茶树病原真菌的抑制性研究[J]. 茶叶科学, 2020 , 40(2) : 269 -278 . DOI: 10.13305/j.cnki.jts.2020.02.013

Abstract

The volatile components from Cymbopogon citratus (DC.) Stapf were extracted by solid phase microextraction and analyzed by gas chromatography mass spectrometry. Fifty one volatile components from stems and leaves were identified. Citral [Contains two compounds (E)-citral and (Z)-citral] and geraniol were found to be the major components. Their relative contents in stems were 81.39% (58.48% and 22.91%) and 4.79%, respectively. Meanwhile, the contents in leaves were 78.50% (51.63% and 26.87%) and 3.68%, respectively. The activities of citral and geraniol to Colletotrichum gloeosporioides, Pestalotiopsis theae and Phoma adianticola were determined using mycelium growth rate method. The preliminarily test results show that the inhibition rate of the two compounds against P. theae were lower than 56% under the tested concentration of 500 mg·L-1 for 96 h. By contrast, they exerted high activities against C. gloeosporioides and P.adianticola with a inhibition rate of 100%. Further evaluated results show that the EC50 of citral to C. gloeosporioides and P.adianticola were (230.56±3.49) mg·L-1 and (124.79±10.29) mg·L-1, respectively. The EC50 of geraniol to the two fungi were (238.38±5.51) mg·L-1 and (115.38±10.96) mg·L-1, respectively. The present study preliminarily revealed the volatile components of C. citratus and the main active fractions against two pathogenic Fungi on tea. The results could provide a theoretical basis for the potential disease prevention of the interplanting of C. citratus and tea.

参考文献

[1] 韩文炎, 李鑫, 颜鹏, 等. 生态茶园的概念与关键建设技术[J]. 中国茶叶, 2018, 40(1): 10-14.
Han W Y, Li X, Yan P, et al.The concept and key construction technology of ecological tea plantation[J]. China Tea, 2018, 40(1): 10-14.
[2] 唐小林. 对我国茶园生态建设的思考[J]. 茶叶, 2004, 30(3): 130-131.
Tang X L.Thoughts on ecological construction of tea plantation in China[J]. Journal of Tea, 2004, 30(3): 130-131.
[3] 汪勇, 段长流, 高楠, 等. 利用“Pull-push”原理架构我国茶园病虫草害生态调控系统[J]. 中国植保导刊, 2016, 36(11): 79-84.
Wang Y, Duan C L, Gao N, et al.Construction of the ecological control system for diseases, pests and weeds in China's tea plantation using the principle of ‘pull-push’[J]. China Plant Protection, 2016, 36(11): 79-84.
[4] 刘守安, 王梦馨, 韩宝瑜. 植物挥发性物质在茶树病害监测和防御中的作用研究现状[J]. 中国茶叶, 2010, 32(1): 12-14.
Liu S A, Wang M X, Han B Y.Current research state on monitor and control of tea pests and diseases by plant volatiles[J]. China Tea, 2010, 32(1): 12-14.
[5] Cheel J, Theoduloz C, Rodríguez J, et al.Free radical scavengers and and antioxidants from lemongrass (Cymbopogon citratus (DC.) stapf.)[J]. Journal of Agricultural and Food Chemistry, 2005, 53(7): 2511-2517.
[6] 欧阳炜. 广西产香茅草化学成分及抗炎镇痛作用的研究[D]. 南宁: 广西中医药大学, 2013.
OuYang W. Studies on chemical constituents and anti-inflammatory and analgesic effect of Cymbopogon citratus (DC.) stapf [D]. Nanning: Guangxi University of Chinese Medicine, 2013.
[7] 梁明龙, 徐汉虹, 朱彩云, 等. 香茅属植物活性成分在病虫害防治中的研究与应用[J]. 广东农业科学, 2005(6): 60-62.
Liang M L, Xu H H, Zhu C Y, et al.Studies and applications of active ingredients in Cymbopogon plants on agricultural diseases and pests management[J]. Guangdong Agricultural Sciences, 2005(6): 60-62.
[8] 陈集双, 彭崇胜, 杜琪珍, 等. 香茅叶挥发油化学成分的研究[J]. 中国药学杂志, 2000, 35(7): 462.
Chen J S, Peng C S, Du Q Z, et al.Studies on chemical constituents of volatile oil from leaves of Cymbopogon citratus[J]. Chinese Pharmaceutical Journal, 2000, 35(7): 462.
[9] 胡彦, 张洁, 张铁, 等. 文山产香茅草挥发性成分GC-MS分析[J]. 文山学院学报, 2017, 30(6): 1-5.
Hu Y, Zhang J, Zhang T, et al.GC-MS analysis of volatile components from Cymbopogon citratus (DC.) stapf in Wenshan[J]. Journal of Wenshan University, 2017, 30(6): 1-5.
[10] 赵建芬, 韦寿莲, 陈子冲. 香茅草挥发油的提取及其化学成分分析[J]. 食品研究与开发, 2015, 36(19): 55-58.
Zhao J F, Wei S L, Chen Z C.Extraction and GC-MS analysis of volatile oils from Cymbopogon citratus (DC.) stapf[J]. Food Research and Development, 2015, 36(19): 55-58.
[11] 欧阳婷, 杨琼梁, 颜红, 等. 不同产地香茅挥发油的化学成分比较研究[J]. 林产化学与工业, 2017, 37(1): 141-148.
OuYang T, Yang Q L, Yan H, et al. Chemical components analysis of the volatile oil of Cymbopogon citratus (DC.) stapf from different regions[J]. Chemistry and Industry of Forest Products, 2017, 37(1): 141-148.
[12] 李桂珍, 梁忠云, 周丽珠, 等. 不同产地的香茅油化学成分分析研究[J]. 香料香精化妆品, 2015(6): 12-16.
Li G Z, Liang Z Y, Zhou L Z, et al.Analytical study on chemical components in citronella oils from different regions[J]. Flavour Fragrance Cosmetics, 2015(6): 12-16.
[13] Ajayi E O, Sadimenko A P, Afolayan A J.GC-MS evaluation of Cymbopogon citratus (DC) Stapf oil obtained using modified hydrodistillation and microwave extraction methods[J]. Food Chemistry, 2016, 209: 262-266.
[14] Ali M, Sahrawat I, Singh O.Volatile constituents of Cymbopogon citratus (DC.) Stapf. leaves[J]. Journal of Essential Oil Bearing Plants, 2004, 7(1): 56-59.
[15] Barbosa L C A, Pereira U A, Martinazzo A P, et al. Evaluation of the chemical composition of Brazilian commercial Cymbopogon citratus (D.C.) Stapf samples[J]. Molecules, 2008, 13(8): 1864-1874.
[16] Vyshali P, Saraswathi K J T, Mallavarapu G R. Chemical composition of the essential oils of Cymbopogon citratus (DC.) Stapf grown in three locations in South India[J]. Journal of Essential Oil Bearing Plants, 2015, 18(1): 230-235.
[17] 陈倩茹, 徐仕翔, 余挺, 等. 香茅精油体外和体内对樱桃番茄致病菌灰葡萄孢的抑制性研究[J]. 中国食品学报, 2014, 14(10): 49-54.
Chen Q R, Xu S X, Yu T, et al.In vitro and in vivo antifungal activities of citronella oil on inhibition of Botrytis cinerea of cherry tomato[J]. Journal of Chinese Institute of Food Science and Technology, 2014, 14(10): 49-54.
[18] 纪淑娟, 常波, 张娜, 等. 香茅精油对果蔬采后主要致病真菌的抑菌活性[J]. 食品工业科技, 2010, 31(6): 79-80.
Ji S J, Chang B, Zhang N, et al.Bacteriostatic activity of citronella essential oil against the main postharvest pathogens of fruits and vegetables[J]. Science and Technology of Food Industry, 2010, 31(6): 79-80.
[19] 李萃邦. 十种植物提取物对茶树叶部病原菌生物活性的研究[D]. 武汉: 华中农业大学, 2017.
Li C B.Research on biological activities of the extracts from 10 kinds of plants against Camellia sinensis pathogens [D]. Wuhan: Huazhong Agricultural University, 2017.
[20] 林霜霜, 邱珊莲, 郑开斌, 等. 5种精油的化学成分及对番茄早疫病的抑菌活性研究[J]. 中国农学通报, 2017, 33(31): 132-138.
Lin S S, Qiu S L, Zheng K B, et al.Chemical composition and antifungal activities of five kinds of essential oil against Alternaria solani[J]. Chinese Agricultural Science Bulletin, 2017, 33(31): 132-138.
[21] 苗建强, 王猛, 李秀环, 等. 五种挥发性化合物对土传病原真菌及线虫的生物活性[J]. 植物保护学报, 2012, 39(6): 561-566.
Miao J Q, Wang M, Li X H, et al.Antifungal and nematicidal activities of five volatile compounds against soil-borne pathogenic fungi and nematodes[J]. Journal of Plant Protection, 2012, 39(6): 561-566.
[22] 赵杰, 周超英, 顾振芳, 等. 柠檬草精油对9种植物病原菌的抑菌活性[J]. 上海交通大学学报(农业科学版), 2011, 29(4): 72-74.
Zhao J, Zhou C Y, Gu Z F, et al.Inhibitory activity of Cymbopogon citratus essential oil against nine phytopathogens[J]. Journal of Shanghai Jiaotong University (Agricultural Science), 2011, 29(4): 72-74.
[23] 黄国洋. 农药试验技术与评价方法[M]. 北京: 中国农业出版社, 2000.
Huang G Y.Pesticide testing techniques and evaluation methods [M]. Beijing: China Agriculture Press, 2000.
[24] 李建明, 欧晓明, 裴晖, 等. Excel在杀菌剂复配研究中的应用[J]. 世界农药, 2013, 35(4): 34-36.
Li J M, Ou X M, Pei H, et al.Application of excel in pesticides mixtures[J]. World Pesticides, 2013, 35(4): 34-36.
[25] 项佳媚, 郑希龙, 魏建和, 等. 香茅草及香茅草茶的研究进展[J]. 世界科学技术-中医药现代化, 2017, 19(5): 874-879.
Xiang J M, Zheng X L, Wei J H, et al.Research progress in Cymbopogon citratus (DC.) stapf and lemongrass tea[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2017, 19(5): 874-879.
[26] 黎华寿, 黄京华, 张修玉, 等. 香茅天然挥发物的化感作用及其化学成分分析[J]. 应用生态学报, 2005, 16(4): 763-767.
Li H S, Huang J H, Zhang X Y, et al.Allelopathic action and chemical composition analysis of citronella natural volatiles[J]. Chinese Journal of Applied Ecology, 2005, 16(4): 763-767.
[27] 杨文秀, 赵维峰, 邓大华, 等. 云南香茅草挥发性成分分析[J]. 亚热带农业研究, 2013, 9(1): 55-57.
Yang W X, Zhao W F, Deng D H, et al.GC-MS analysis of volatile components from lemongrass in Yunnan[J]. Subtropical Agriculture Research, 2013, 9(1): 55-57.
[28] 欧阳婷, 杨琼梁, 颜红, 等. 香茅挥发油研究进展[J]. 中国中医药信息杂志, 2016, 23(2): 130-133.
OuYang T, Yang Q L, Yan H, et al. Research progress in volatile oil of Cymbopogon citratus (DC.) stapf[J]. Chinese Journal of Information on Traditional Chinese Medicine, 2016, 23(2): 130-133.
[29] 邵鑫. 茶炭疽病的发生及其防治[J]. 蚕桑茶叶通讯, 2001(1): 14.
Shao X.The occurrence and control of tea anthracnose[J]. Newsletter of Sericulture and Tea, 2001(1): 14.
[30] 杨文, 陈瑶, 陈小均, 等. 茎点霉真菌Phoma adianticola引起的一种茶树新病害[J]. 茶叶科学, 2016, 36(1): 59-67.
Yang W, Chen Y, Chen X J, et al.A new disease of tea plant caused by Phoma adianticola[J]. Journal of Tea Science, 2016, 36(1): 59-67.
文章导航

/