欢迎访问《茶叶科学》,今天是

不同品种茶树根际AM真菌群落结构分析

  • 何斐 ,
  • 李冬花 ,
  • 卜凡
展开
  • 安康学院现代农业与生物科技学院,陕西 安康 725000
何斐,女,副教授,主要从事微生物资源利用方面的研究。hefei6000@163.com

收稿日期: 2019-10-27

  修回日期: 2019-12-24

  网络出版日期: 2020-06-09

基金资助

陕西省科协青年人才托举计划项目(20170210)、陕西省教育厅自然科学专项研究计划项目(17JK0016)、安康学院高层次人才科研启动项目(2017AYQDZR06)、国家级大学生创新创业训练计划项目(201711397007、201711397006)

Analysis of Arbuscular Mycorrhizal Fungal Community Structure in the Rhizosphere of Different Tea Cultivars

  • HE Fei ,
  • LI Donghua ,
  • BU Fan
Expand
  • School of Agriculture & Biotechnology, Ankang University, Ankang 725000, China

Received date: 2019-10-27

  Revised date: 2019-12-24

  Online published: 2020-06-09

摘要

对陕西安康汉水韵茶园栽培的5个品种茶树根际丛枝菌根(Arbuscular mycorrhiza,AM)真菌群落结构特征进行分析,以期丰富我国茶树AM真菌种质资源库。结果表明,不同品种茶树根际AM真菌种丰度及种属组成等存在差异。其中,紫阳群体种茶树根际分离的AM真菌最多(6种),陕茶1号、龙井长叶、龙井43和福鼎大白茶各分离到5、4、4种和3种。龙井长叶茶树根际AM真菌孢子密度最高(每克干土含3.57个孢子),龙井43最低(每克干土含1.10个孢子)。紫阳群体种茶树的AM真菌物种多样性Shannon-Wiener和均匀度指数均达到最高,分别为0.63和0.096,龙井长叶最低(0.18和0.027)。龙井长叶的菌根定殖率最高(29.5%),福鼎大白最低(15.8%)。不同茶树品种AM真菌种类组成的相似性系数维持在0.111~0.750,其中,龙井长叶与龙井43茶树根际AM真菌种类组成相似性系数最高,而福鼎大白和紫阳群体种相似性系数最低。研究表明,不同品种茶树根际AM真菌群落结构存在一定的差异,根际土壤中鉴定的AM真菌资源对进一步筛选和研发茶树专用AM真菌菌剂,促进茶产业发展具有重要意义。

本文引用格式

何斐 , 李冬花 , 卜凡 . 不同品种茶树根际AM真菌群落结构分析[J]. 茶叶科学, 2020 , 40(3) : 319 -327 . DOI: 10.13305/j.cnki.jts.2020.03.003

Abstract

In order to enrich the arbuscular mycorrhizal (AM) fungal germplasm resources of tea plants (Camellia sinensis) in China, the community structure of AM fungi in the rhizosphere soil of different tea cultivars grown in Hanshuiyun tea garden of Ankang City, Shaanxi Province were analyzed. The results show that species richness, species and genera composition of AM fungi in the rhizosphere soil varied with tea cultivars. A total of six AM fungal species were isolated from the rhizosphere soil of Ziyang population. Likewise, five from Shancha 1, four from Longjing Changye, four from Longjing 43, and three species from Fuding Dabai. Soil collected from the rhizosphere of Longjing Changye had the highest spore density (3.57 spores per gram of dry soil), while the lowest spore density (1.10 spores per gram of dry soil) was found in the rhizosphere of Longjing 43. The highest Shannon-Wiener and Pielou evenness indices were found in the rhizosphere of Ziyang population (0.63 and 0.096), whereas the lowest values were observed in the rhizosphere of Longjing Changye (0.18 and 0.027). The maximum mycorrhizal colonization (29.5%) was found in the rhizosphere of Longjing Changye, whereas the minimum value (15.8%) was observed in the rhizosphere of Fuding Dabai. The Sorenson’s similarity coefficient of AM fungal species composition among five tested tea cultivars ranged from 0.111 to 0.750, with the highest between Longjing Changye and Longjing 43, and the lowest between Fuding Dabai and Ziyang population. The results reveal obvious differences in AM fungal community composition among the five tea cultivars. The identified AM fungal resources in rhizosphere soil are of great significance for further screening, researching AM fungi agent, and promoting the development of tea industrialization.

参考文献

[1] 李元敬, 刘智蕾, 何兴元, 等. 丛枝菌根共生体中碳、氮代谢及其相互关系[J]. 应用生态学报, 2014, 25(3): 903-910.
Li Y J, Liu Z L, He X Y, et al.Metabolism and interaction of C and N in the arbuscular mycorrhizal symbiosis[J]. Chinese Journal of Applied Ecology, 2014, 25(3): 903-910.
[2] Zhu C, Tian G L, Luo G W, et al.N-fertilizer-driven association between the arbuscular mycorrhizal fungal community and diazotrophic community impacts wheat yield[J]. Agriculture, Ecosystems & Environment, 2018, 254: 191-201.
[3] Wang C, White P J, Li C J.Colonization and community structure of arbuscular mycorrhizal fungi in maize roots at different depths in the soil profile respond differently to phosphorus inputs on a long-term experimental site[J]. Mycorrhiza, 2016, 27(4): 1-13.
[4] Zhang J, Wang F, Che R X, et al.Precipitation shapes communities of arbuscular mycorrhizal fungi in Tibetan alpine steppe[J]. Scientific Reports, 2016, 6: 23488. doi: 10.1038/srep23488.
[5] Manoharan L, Rosenstock N P, Williams A, et al.Agricultural management practices influence AMF diversity and community composition with cascading effects on plant productivity[J]. Applied Soil Ecology, 2017, 115: 53-59.
[6] Liu H G, Wang Y J, Tang M.Arbuscular mycorrhizal fungi diversity associated with two halophytesLycium barbarumL. andElaeagnus angustifoliaL. in Ningxia, China[J]. Archives of Agronomy and Soil Science, 2017, 63(6): 796-806.
[7] 张海波, 梁月明, 冯书珍, 等. 土壤类型和树种对根际土丛枝菌根真菌群落及其根系侵染率的影响[J]. 农业现代化研究, 2016, 37(1): 187-194.
Zhang H B, Liang Y M, Feng S Z, et al.The effects of soil types and plant species on arbuscular mycorrhizal fungi community and colonization in the rhizosphere[J]. Research of Agricultural Modernization, 2016, 37(1): 187-194.
[8] 蔡邦平, 陈俊愉, 张启翔, 等. 云南昆明梅花品种根围丛枝菌根真菌多样性研究[J]. 北京林业大学学报, 2013, 35(S1): 38-41.
Cai B P, Chen J Y, Zhang Q X, et al.Diversity of arbuscular mycorrhizal fungi associated withPrunus mumein Kunming, Yunnan, China[J]. Journal of Beijing Forestry University, 2013, 35(S1): 38-41.
[9] 任禛, 尹敏, 夏体渊, 等. 不同烤烟品种根系丛枝菌根真菌(AMF)群落结构和组成的差异分析[J]. 烟草科技, 2016, 49(3): 1-9.
Ren Z, Yin M, Xia T Y, et al.Structure and composition difference of arbuscular mycorrhizal fungi community in roots of flue-cured tobacco varieties[J]. Tobacco Science & Technology, 2016, 49(3): 1-9.
[10] 刘辉, 陈梦, 黄引娣, 等. 安徽茶区茶树丛枝菌根真菌多样性[J]. 应用生态学报, 2017, 28(9): 2897-2906.
Liu H, Chen M, Huang Y D, et al.Diversity of arbuscular mycorrhizal fungi in the rhizosphere of tea plant from Anhui tea area, China[J]. Chinese Journal of Applied Ecology, 2017, 28(9): 2897-2906.
[11] 罗勇, 欧淑琼, 陈丝, 等. 基于RNA-Seq的茶树CsMYB生物信息学分析[J]. 分子植物育种, 2017, 15(6): 2119-2125.
Luo Y, Ou S Q, Chen S, et al.Bioinformatics analysis of CsMYB in tea plant (Camellia sinensis) based on RNA-seq[J]. Molecular Plant Breeding, 2017, 15(6): 2119-2125.
[12] 国家茶叶产业技术体系产业经济研究室. 2018年我国茶叶产销形势分析[J]. 中国茶叶, 2019, 41(4): 32-33.
Industrial Economy Research Office of National Tea Industry Technology System. Analysis on the situation of tea production and marketing in China in 2018[J]. China Tea, 2019, 41(4): 32-33.
[13] 吴丽莎, 王玉, 李敏, 等. 崂山茶区茶树根围AM真菌多样性[J]. 生物多样性, 2009, 17(5): 499-505.
Wu L S, Wang Y, Li M, et al.Arbuscular mycorrhizal fungi diversity in the rhizosphere of tea plant (Camellia sinensis) grown in Laoshan, Shandong[J]. Biodiversity Science, 2009, 17(5): 499-505.
[14] Singh S, Pandey A, Chaurasia B, et al.Diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of tea growing in ‘natural’ and ‘cultivated’ ecosites[J]. Biology & Fertility of Soils, 2008, 44(3): 491-500.
[15] 查林. 安康茶叶产业发展战略研究[D]. 西安: 西安理工大学, 2006.
Cha L.The discussion on the development strategy of Ankang tea industry [D]. Xi′an: Xi′an University of Technology, 2006.
[16] Phillips J M, Hayman D S.Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assement of infection[J]. Transations of the British Mycological Society, 1970, 55(1): 158-161.
[17] 柳洁, 肖斌, 王丽霞, 等. 盐胁迫下丛枝菌根(AM)对茶树生长及茶叶品质的影响[J]. 茶叶科学, 2013, 33(2): 140-146.
Liu J, Xiao B, Wang L X, et al.Influence of AM on the growth of tea plant and tea quality under salt stress[J]. Journal of Tea Science, 2013, 33(2): 140-146.
[18] 张春兰, 李苇洁, 姚红艳, 等. 不同猕猴桃品种根际AM真菌多样性与土壤养分相关性分析[J]. 果树学报, 2017, 34(3): 90-99.
Zhang C L, Li W J, Yao H Y, et al.Correlation study on the diversity of the AM fungi and soil nutrients in the rhizosphere of different kiwifruit cultivars[J]. Journal of Fruit Science, 2017, 34(3): 90-99.
[19] Ianson D C, Allen M F.The effects of soil texture on extraction of vesicular-arbuscular mycorrhizal fungal spores from arid sites[J]. Mycologia, 1986, 78(2): 164-168.
[20] Schenck N C, Pérez Y.A manual for the identification of vesicular arbuscular mycorrhizal fungi[M]. Florida: University of Florida: 1990: 1-233.
[21] Redecker D, Schüßler A, Stockinger H.An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota)[J]. Mycorrhiza, 2013, 23(7): 515-531.
[22] 王幼珊, 刘润进. 球囊菌门丛枝菌根真菌最新分类系统菌种名录[J]. 菌物学报, 2017, 36(7): 820-850.
Wang Y S, Liu R J.A checklist of arbuscular mycorrhizal fungi in the recent taxonomic system of Glomeromycota[J]. Mycosystema, 2017, 36(7): 820-850.
[23] He F, Tang M, Zhong S L.Effects of soil and climatic factors on arbuscular mycorrhizal fungi in rhizosphere soil underRobinia pseudoacaciain the Loess Plateau, China[J]. European Journal of Soil Science, 2016, 67(6): 847-856.
[24] Van der heijden M G A, Klironomos J N, Ursic M. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity[J]. Nature, 1998, 396: 69-72.
[25] 盛敏, 唐明, 张峰峰, 等. 土壤因子对甘肃、宁夏和内蒙古盐碱土中AM真菌的影响[J]. 生物多样性, 2011, 19(1): 85-92.
Sheng M, Tang M, Zhang F F, et al.Effect of soil factors on arbuscular mycorrhizal fungi in saline alkaline soils of Gansu, Inner Mongolia and Ningxia[J]. Biodiversity Science, 2011, 19(1): 85-92.
[26] Shannon C E, Weaver W.The mathematical theory of communication [M]. Urbana: Urbana university of Illinois Press. 1949, 85(2): 117.
[27] Pielou E C.The measurement of diversity in different types of biological collections[J]. Journal of Theoretical Biology, 1966, 13: 131-144.
[28] Pielou E C.Ecological Diversity[M]. New York: John Wiley and Sons Inc, 1975.
[29] 刘洁, 刘静, 金海如. 丛枝菌根真菌N代谢与C代谢研究进展[J]. 微生物学杂志, 2011, 31(6): 70-75.
Liu J, Liu J, Jin H R.Advancement in arbuscular mycorrhizal fungi’s N metabolic and C metabolic[J]. Journal of Microbiology, 2011, 31(6): 70-75.
[30] 郭绍霞, 刘润进. 不同品种牡丹对丛枝菌根真菌群落结构的影响[J]. 应用生态学报, 2010, 21(8): 1993-1997.
Guo S X, Liu R J.Effects of different peony cultivars on community structure of arbuscular mycorrhizal fungi in rhizosphere soil[J]. Chinese Journal of Applied Ecology, 2010, 21(8): 1993-1997.
[31] Eom A H, Hartnett D C, Wilson G W T. Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie[J]. Oecologia, 2000, 122: 435-444.
[32] 李岩, 焦惠, 徐丽娟, 等. AM真菌群落结构与功能研究进展[J]. 生态学报, 2010, 30(4): 1089-1096.
Li Y, Jiao H, Xu L J, et al.Advances in the study of community structure and function of arbuscular mycorrhizal fungi[J]. Acta Ecologica Sinica, 2010, 30(4): 1089-1096.
[33] 张文驹, 戎俊, 韦朝领, 等. 栽培茶树的驯化起源与传播[J]. 生物多样性, 2018, 26(4): 357-372.
Zhang W J, Rong J, Wei C L, et al.Domestication origin and spread of cultivated tea plants[J]. Biodiversity Science, 2018, 26(4): 357-372.
[34] 张成才, 刘园, 姜燕华, 等. SSR标记鉴定浙江省主要无性系茶树品种的研究[J]. 植物遗传资源学报, 2014, 15(5): 926-931.
Zhang C C, Liu Y, Jiang Y H, et al.Application of SSR markers in cultivar identification of clonal tea plant in Zhejiang province, China[J]. Journal of Plant Genetic Resources, 2014, 15(5): 926-931.
[35] Chen Y S, Chen G, Fu X, e al. Phytochemical profiles and antioxidant activity of different varieties ofAdinandratea (AdinandraJack)[J]. Journal of Agricultural & Food Chemistry, 2015, 63(1): 169-176.
[36] 吴丽莎, 王玉, 李敏, 等. 崂山茶区茶树根际丛枝菌根真菌调查[J]. 青岛农业大学学报: 自然科学版, 2009, 26(3): 171-173.
Wu L S, Wang Y, Li M, et al.A survey of arbuscular mycorrhizal fungi in the rhizosphere ofCamellia sinensisin Laoshan[J]. Journal of Qingdao Agricultural University (Natural Science), 2009, 26(3): 171-173.
[37] 卢东升, 吴小芹. 豫南茶园VA菌根真菌种类研究[J]. 南京林业大学学报: 自然科学版, 2005, 29(3): 33-36.
Lu D S, Wu X Q.Species of VAM fungi around tea roots in the southern area of Henan province[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2005, 29(3): 33-36.
[38] 吴铁航, 郝文英, 林先贵, 等. 红壤中VA菌根真菌(球囊霉目)的种类和生态分布[J]. 真菌学报, 1995, 14(2): 81-85.
Wu T H, Hao W Y, Lin X G, et al.VA mycorrhizal fungi (Glomales) and their ecological distribution in red soils[J]. Acta Mycologica Sinica, 1995, 14(2): 81-85.
[39] Shi Z Y, Gao S C, Wang F Y.Biodiversity of arbuscular mycorrhizal fungi in desert ecosystems[J]. Arid Zone Research, 2008, 25(6): 783-789.
[40] 贺学礼, 陈烝, 郭辉娟, 等. 荒漠柠条锦鸡儿AM真菌多样性[J]. 生态学报, 2012, 32(10): 3041-3049.
He X L, Chen Z, Guo H J, et al.Diversity of arbuscular fungi in the rhizosphere ofCaragana korshinskiiKom. in desert zone[J]. Acta Ecologica Sinica, 2012, 32(10): 3041-3049.
[41] 吕杰, 吕光辉, 马媛. 新疆艾比湖流域胡杨幼苗根际AM真菌多样性特征[J]. 林业科学, 2016, 52(4): 59-67.
Lv J, Lv G H, Ma Y.Diversity of Arbuscular mycorrhizal fungi in the rhizosphere ofPopulus euphraticaseedlings in Ebinur lake basin, Xinjiang[J]. Scientia Silvae Sinicae, 2016, 52(4): 59-67.
[42] 马忠莉. 松嫩草地丛枝菌根真菌孢子多样性对施肥的响应[D]. 长春: 东北师范大学, 2016.
Ma Z L.Impacts of fertilization on the diversity of arbuscular mycorrhizal fungal spore in Songnen grassland [D]. Changchun: Northeast Normal University, 2016.
[43] 李华健, 贺学礼. 河北峰峰矿区构树AM真菌物种多样性及生态适应性[J]. 河北大学学报(自然科学版), 2019, 39(3): 278-287.
Li H J, He X L.Species diversity and ecological adaptability of AM fungi inBroussonetia papyriferafrom Fengfeng mining area in Hebei province[J]. Journal of Hebei University (Natural Science Edition), 2019, 39(3): 278-287.
[44] 贺学礼, 郭辉娟, 王银银, 等. 内蒙古农牧交错区沙蒿根围AM真菌物种多样性[J]. 河北大学学报(自然科学版), 2012, 32(5): 506-514.
He X L, Guo H J, Wang Y Y, et al.Species diversity of arbuscular mycorrhizal fungi in the rhizosphere ofArtemisia sphaerocephalain Inner Mongolia[J]. Journal of Hebei University (Natural Science Edition), 2012, 32(5): 506-514.
文章导航

/