以KM雄性小鼠为研究对象,酵母膏(7.5 g·kg-1)和氧嗪酸钾(250 mg·kg-1)联合给药建立高尿酸血症小鼠模型,探究表没食子儿茶素没食子酸酯(EGCG)和维生素C(Vc)联用对高尿酸血症小鼠血尿酸水平的影响。将小鼠随机分为6组(n=6):空白组、模型组、别嘌呤醇组(阳性药组)、EGCG组、EGCG联合Vc组和Vc组,连续给药7 d后测定生化指标。结果表明,与模型组相比,EGCG联合Vc组小鼠的血尿酸值(UA),血尿素氮(BUN)和肌酐(Cr)水平均明显降低(P<0.001);EGCG与Vc联用明显抑制了肝脏中腺苷脱氨酶(ADA)和黄嘌呤氧化酶(XOD)的活性(P<0.05或P<0.01),并显著下调了肾脏中葡萄糖转运蛋白9(GLUT9)mRNA的表达(P<0.001);肾脏切片显示EGCG和Vc联用显著改善高尿酸血症小鼠的肾脏损伤。此外,EGCG与Vc联用对高尿酸血症小鼠的作用效果优于EGCG。
KM male mice were used as subjects of the study. Yeast extracts (7.5 g·kg-1) and potassium oxonate (250 mg·kg-1) were administered to establish the hyperuricemic mice model. The study aimed to investigate the integrative effect of EGCG and vitamin C (Vc) on serum uric acid levels of hyperuricemic mice. Mice were randomly divided into 6 groups (n=6): blank group, model group, allopurinol group, EGCG group, EGCG + Vc group and Vc group. The biochemical indexes of mice were measured after 7 d of continuous administration. The results show that the serum uric acid (UA), serum urea nitrogen (BUN) and creatinine (Cr) of EGCG + Vc group were significantly lower than those of the model group (P<0.001). The combination of EGCG and Vc could remarkably inhibited the activities of adenosine deaminase (ADA) and xanthine oxidase (XOD) in the liver (P<0.05 or P<0.01) and significantly down-regulated the expression of glucose transporter 9 (GLUT9) in the kidney (P<0.001). The results of kidney slices indicated that EGCG + Vc could obviously improve the damages to the kidney in hyperuricemic mice. In addition, the integrative effect of EGCG + Vc on hyperuricemic mice was better than that of EGCG.
[1] Boffetta P, Nordenvall C, Nyrén O, et al.A prospective study of gout and cancer[J]. European Journal of Cancer Prevention, 2009, 18(2): 127-132.
[2] Mallat S G, Al Kattar S, Tanios B Y, et al.Hyperuricemia, hypertension, and chronic kidney disease: an emerging association[J]. Current Hypertension Reports, 2016, 18(10): 74. doi: 10.1007/s11906-016-0684-z.
[3] Li M, Hu X L, Fan Y L, et al.Hyperuricemia and the risk for coronary heart disease morbidity and mortality a systematic review and dose-response meta-analysis[J]. Scientific Reports, 2016, 6: 19520. doi: 10.1038/srep19520.
[4] Mortada I.Hyperuricemia, type 2 diabetes mellitus, and hypertension: an emerging association[J]. Current Hypertension Reports, 2017, 19(9): 69. doi: 10.1007/s11906-017-0770-x.
[5] Schlesinger N, Norquist J M, Watson D J.Serum urate during acute gout[J]. Journal of Rheumatology, 2009, 36(6): 1287-1289.
[6] Nikoo M, Regenstein J M, Gavlighi H A.Antioxidant and antimicrobial activities of (-)-epigallocatechin-3-gallate (EGCG) and its potential to preserve the quality and safety of foods[J]. Comprehensive Reviews in Food Science and Food Safety, 2018, 17(3): 732-753.
[7] Rady I, Mohamed H, Rady M, et al.Cancer preventive and therapeuticeffects of EGCG, the major polyphenol in green tea[J]. Egyptian Journal of Basic andApplied Sciences, 2018, 5(1): 1-23.
[8] Eng Q Y, Thanikachalam P V, Ramamurthy S.Molecular understanding of epigallocatechin-gall-ate (EGCG) in cardiovascular and metabolic diseases[J]. Journal of Ethnopharmacology, 2018, 210: 296-310.
[9] 孙陶利, 江妹, 马宁. 表没食子儿茶素没食子酸酯稳定性及稳定化方法研究进展[J]. 转化医学杂志, 2018, 7(6): 377-381.
Sun T L, Jiang M, Ma N.Progress in research on stability and stabilization of epigallocatechin gallate[J]. Translational Medicine Journal, 2018, 7(6): 377-381.
[10] 李丹, 初阳, 杨倩. 茶多酚在大鼠肠道的吸收动力学研究[J]. 中国医科大学学报, 2014, 43(10): 914-916, 930.
Li D, Chu Y, Yang Q.Study on absorption kinetics of tea polyphenol in rat intestine[J]. Journal of China Medical University, 2014, 43(10): 914-916, 930.
[11] 徐懿, 屠幼英, 钟小玉. 茶儿茶素异构化研究现状[J]. 中草药, 2008, 39(7): 1106-1109.
Xu Y, Tu Y Y, Zhong X Y.Review on epimerization of tea catechins[J]. Chinese Traditional and Herbal Drugs, 2008, 39(7): 1106-1109.
[12] 扎米热·库尔班, 孙玉萍, 徐菲莉. GLUT9在尿酸重吸收中的作用及其与相关疾病关联性研究进展[J]. 医学综述, 2018, 24(20): 2983-2987.
Kurban Z, Sun Y P, Xu F L.Role of GLUT9 in uric acid reabsorption and its association with related diseases[J]. Medical Recapitulate, 2018, 24(20): 3983-3987.
[13] 韩笑. 高尿酸血症的形成机制简述[J]. 临床医药文献电子杂志, 2017, 4(63): 12467.
Han X.Brife review on the formation mechanism of hyperuricemia[J]. Journal of Clinical Medical, 2017, 4(63): 12467.
[14] 李媛媛, 周海燕, 吴绿英, 等. 大鼠高尿酸血症模型的建立与研究[J]. 中国实验动物学报, 2019, 27(6): 747-752.
Li Y Y, Zhou H Y, Wu L Y, et al.Establishment and study of a hyperuricemia rat model[J]. Acta Laboratorium Animalis Scientia Sinica, 2019, 27(6): 747-752.
[15] Zhu C, Xu Y, Liu Z H.The anti-hyperuricemic effect of epigallocatechin-3-gallate (EGCG) on hyperur-icemicmice[J]. Biomedicine & Pharmacotherapy, 2018, 97: 168-173.
[16] Auberson M, Stadelmann S, Stoudmann C, et al.SLC2A9 (GLUT9) mediates urate reabsorption in the mouse kidney[J]. Pflügers Archiv-European Journal of Physiology, 2018, 470(12): 1739-1751.