欢迎访问《茶叶科学》,今天是
综述

茶叶中原花青素研究进展

  • 高晨曦 ,
  • 黄艳 ,
  • 孙威江
展开
  • 1.福建农林大学 园艺学院,福建 福州 350002;
    2.福建农林大学 安溪茶学院,福建 泉州 362400;
    3.福建省茶产业工程技术研究中心,福建 福州 350002;
    4.福建茶产业技术开发基地,福建 福州 350002
高晨曦,女,硕士研究生,主要从事茶树栽培育种与生物技术方面的研究。

收稿日期: 2019-11-25

  修回日期: 2020-02-13

  网络出版日期: 2020-08-18

基金资助

国家自然科学基金(31770732)、福建省自然科学基金(2019J01413)、福建农林大学科技创新专项基金(CXZX2016002)

Research Progress of Proanthocyanidins in Tea

  • GAO Chenxi ,
  • HUANG Yan ,
  • SUN Weijiang
Expand
  • 1. College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
    2. Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362400, China;
    3. Tea Industry Engineering Technology Research Center of Fujian Province, Fuzhou, 350002, China;
    4. Tea Industry Technology Development Base of Fujian Province, Fuzhou 350002, China

Received date: 2019-11-25

  Revised date: 2020-02-13

  Online published: 2020-08-18

摘要

原花青素是茶叶中一类重要的多酚类物质,也是一种天然的抗氧化剂,近年来茶叶中含有的原花青素类物质(Proanthocyanidins,PAs)受到广泛关注。对茶树中原花青素类物质的研究有助于推进茶树生长过程中多酚类代谢途径研究,在茶叶生物化学基础研究方面具有重要意义。基于国内外学者对原花青素的研究现状,综述了原花青素与花青素的关系、茶叶中原花青素的生物合成途径、缩合机理、茶叶中原花青素的类型,以及在茶叶中的含量差异和应用现状,并探讨其研究利用的发展趋势。

本文引用格式

高晨曦 , 黄艳 , 孙威江 . 茶叶中原花青素研究进展[J]. 茶叶科学, 2020 , 40(4) : 441 -453 . DOI: 10.13305/j.cnki.jts.2020.04.002

Abstract

Proanthocyanidins are an important kind of polyphenols in tea leaves, and regarded as natural antioxidants. In recent years, proanthocyanudins in tea leaves had attracted widespread attention. Relative research would promote the study on polyphenol metabolic pathways during tea growth process. Moreover it is of great significance in conducting fundamental research on tea plant biochemistry. Based on domestic and overseas research status, this study summarized the relationship between proanthocyandins and anthocyandins, the biosynthetic pathways of procyanidins in tea and the condensation mechanism of proanthocyandins. The types, the application status and content difference of proanthocyanidins were also concerned in an attempt to discuss the development trend in the future.

参考文献

[1] 王俊儒. 天然产物提取分离与鉴定技术[M]. 杨凌: 西北农林科技大学出版社, 2006: 121.
Wang J R.Extraction, separation and identification of natural products [M]. Yangling: Northwest Agricultural and Forestry University Press, 2006: 121.
[2] 张慧文, 张玉, 马超美. 原花青素的研究进展[J]. 食品科学, 2015(5): 296-304.
Zhang H W, Zhang Y, Ma C M.Progress in procyanidins research[J]. Food Science. 2015(5): 296-304.
[3] 徐歆, 姚其凤, 祝琳, 等. 紫娟茶原花青素的组分及活性评价[J]. 食品工业科技, 2018, 39(21): 235-240.
Xu X, Yao Q F, Zhu L, et al.Analysis on components and activities of proanthocyanidins from Zijuan tea[J]. Science and Technology of Food Industry, 2018, 39(21): 235-240.
[4] 桑雅丽, 李晓春, 王欣宇, 等. 山葡萄籽中原花青素的提取及其含量测定[J]. 赤峰学院学报(自然科学版), 2018, 34(9): 40-42.
Sang Y L, Li X C, Wang X Y, et al.Extraction and content determination of proanthocyanidins from vitis amurensis seeds[J]. Journal of Chifeng University (Natural Science Edition), 2018, 34(9): 40-42.
[5] 谢倩, 汪婷, 李佳楠. 几种常见品种葡萄籽及葡萄皮中原花青素含量测定[J]. 科教导刊, 2017(12): 170-171.
Xie Q, Wang T, Li J N.Determination of PCs content in grape seeds and skins of several common varieties[J]. The Guide of Science and Education, 2017(12): 170-171.
[6] 裴云逸, 陆星星, 武翠芳, 等. 花生衣中原花青素及多酚物质含量分析研究[J]. 食品研究与开发, 2017, 38(17): 143-147.
Pei Y Y, Lu X X, Wu C F, et al.Analysis of proanthocyanidins and polyphenols in peanut skins[J]. Food Research and Development, 2017, 38(17): 143-147.
[7] 姜贵全, 张卓睿, 张诗朦, 等. 落叶松树皮多聚原花青素的树脂催化降解及抗氧化活性[J]. 北京林业大学学报, 2018, 40(9): 118-126.
Jiang G Q, Zhang Z R, Zhang S M, et al.Degradation of polymeric proanthocyanidin from larch bark catalyzed by resin and antioxidant activity[J]. Journal of Beijing Forestry University, 2018, 40(9): 118-126.
[8] Joslyn M A, Dittmar H F K. The proanthocyanidins of skins and seed of Pinot Blanc varieties[J]. American Journal of Enology and Viticulture, 1967(18): 1-10.
[9] Nonaka G I, Kawahara O, Nishioka I.Tannins and related compounds. XV. A new class of dimeric flavan-3-ol gallates, theasinensins A and B, and proanthocyanidins gallates from green tea leaf. (1)[J]. Chemical and Pharmaceutical Bulletin, 1983, 31(11): 3906-3914.
[10] Nonaka G I, Kawahara O, Nishioka I.Tannins and related compounds. LXIX: Isolation and structure elucidation of B, B'-Linked bisflavanoids, theasinensins D-G and oolongtheanin from Oolong Tea. (2)[J]. Chemical and Pharmaceutical Bulletin, 1983, 31(11): 1676-1684.
[11] Nonaka G I, Kawahara O, Nishioka I.Tannins and related compounds. XC. 8-C-ascorbyl (-)-epigallocatechin 3-O-gallate and novel dimeric flavan-3-ols, oolonghomobisflavans A and B, from oolong tea. (3)[J]. Chemical and Pharmaceutical Bulletin, 1983, 31(11): 3255-3263.
[12] 樊兴土, 朱全芬, 夏春华. 茶叶中的原花色素类物质[J]. 天然产物研究与开发, 1992(2): 84-93.
Fan X T, Zhu Q F, Xia C H.Proanthocyanidins in tea[J]. Natural Product Research and Development, 1992(2): 84-93.
[13] Robertson A.The chemistry and biochemistry of black tea production—the non-volatiles[M]//Willson K C, Clifford M N. Tea. Dordrecht: Springer, 1992: 555-601.
[14] Jezek M, Zorb C, Merkt N, et al.Anthocyanin management in fruits by fertilization[J]. Journal of Agricultural and Food Chemistry. 2018, 66(4): 753-764.
[15] 李文萍. 富含原花青素、叶酸和游离氨基酸的茶树优异种质资源的研究[D]. 福州: 福建农林大学, 2014.
Li W P.Research on the tea excellent germplasm resources of high content of PC, folate and free amino acid [D]. Fuzhou: Agriculture and Forestry University, 2014.
[16] Bagchi D, Swaroop A, Preuss H G, et al.Free radical scavenging, antioxidant and cancer chemoprevention by grape seed proanthocyanidin: An overview[J]. Mutation Research, 2014, 768: 69-73.
[17] 宛晓春. 茶树次生代谢[M]. 北京: 科学出版社, 2015: 41.
Wan X C.Secondary metabolism of tea plant [M]. Beijing: Science Press, 2015: 41.
[18] 梅菊芬, 徐德良, 汤茶琴, 等. 茶树花青素及其种质资源的研究和利用进展[J]. 热带农业工程, 2013, 37(1): 42-46.
Mei J F, Xu D L, Tang C Q, et al.Advances on research and utilization of tea tree (Camellia sinensis) anthocyanins and its germplasm resources[J]. Tropical Agricultural Engineering, 2013, 37(1): 42-46.
[19] Jiang X L, Huang K Y, Zheng G S, et al.CsMYB5a and CsMYB5e from Camellia sinensis differentially regulate anthocyanin and proanthocyanidin[J]. Plant Science, 2018, 270: 209-220.
[20] 王培强. 茶树中儿茶素类及原花青素生物合成关键基因的功能研究[D]. 合肥: 安徽农业大学, 2018.
Wang P Q.Functional research of key genes in the biosynthesis of catechins and proanthocyanidins in the tea plant (Camellia sinensis) [D]. Hefei: Anhui Agricultural University, 2018.
[21] Zhao J, Pang Y, Dixon R A.The mysteries of proanthocyanidin transport and polymerization[J]. Plant Physiology, 2010, 153(2): 437-443.
[22] Kitamura S, Shikazono N, Tanaka A.TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis[J]. Plant Journal, 2004, 37(1): 104-114.
[23] Marinova K, Pourcel L, Weder B, et al.The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat[J]. Plant Cell, 2007, 19(6): 2023-2038.
[24] Zhao J, Huhman D, Shadle G, et al.MATE 2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula[J]. Plant Cell, 2011, 23(4): 1536-1555.
[25] Baxter I R, Young J C, Armstrong G, et al.A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(7): 2649-2564.
[26] Pang Y, Peel G J, Sharma S B, et al.A transcript profiling approach reveals an epicatechin-specific glucosyl transferase expressed in the seed coat of Medicago truncatula[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(37): 14210-14215.
[27] Dixon R A, Xie D Y, Sharma S B.Proanthocyanidins—a final frontier in flavonoid research?[J]. New Phytologist, 2005, 165(1): 9-28.
[28] Wang P Q, Liu Y J, Zhang L J, et al.Functional demonstration of plant flavonoid carbocations proposed to be involved in the biosynthesis of proanthocyanidins[J]. The Plant Journal, 2020, 101: 18-36
[29] Haslam E, Opie C T, Porter L J.Procyanidin metabolism—a hypothesis[J]. Phytochemistry, 1977, 16(1): 99-102.
[30] Harbowy M E, Balentine D A.Tea chemistry[J]. Critical Reviews in Plant Sciences, 1997, 16(5): 415-480.
[31] 李大祥, 宛晓春, 杨昌军, 等. 茶儿茶素氧化机理[J]. 天然产物研究与开发, 2006(1): 171-181.
Li D X, Wan X C, Yang C J, et al.Oxidation mechanism of tea catechins[J]. Natural Product Research and Development, 2006(1): 171-181.
[32] Haslam E.Polyphenol-protein interactions[J]. Biochemical Journal. 1974, 139(1): 285-288.
[33] Jacques D, Opie C T, Porter L J, et al.Plant proanthocyanidins. Part 4. Biosynthesis of procyanidins and observations on the metabolism of cyaniding in plants[J]. Journal of the Chemical Society-perkin Transactions 1, 1977(14): 1637-1643.
[34] Fletcher A C, Porter L J, Haslam E, et al.Plant proanthocyanidins, part 3. conformational and configurational studies of natural procyanidins[J]. Journal of the Chemical Society, 1977(14): 1628-1637.
[35] Haslam E.Symmetry and promiscuity in procyanidin biochemistry[J]. Phytochemistry, 1977, 16(11): 1625-1640.
[36] McManus J P, Davis K G, Beart J E, et al. Polyphenol Interactions. Part 1. Introduction: some observations on the reversible complexation of polyphenols with proteins and polysaccharides[J]. Journal of the Chemical Society-perkin Transactions 2, 1985(9): 1429-1438.
[37] Beart J E, Lilley T H, Haslam E. Polyphenol Interactions.Part 2. Covalent binding of procyanidins to proteins during acid-catalysed decomposition; observations on some polymeric proanthocyanidins[J]. Journal of the Chemical Society-perkin Transactions 2, 1985(9): 1439-1443.
[38] Jiang X L, Liu Y J, Wu H, et al.Analysis of accumulation patterns and preliminary study on the condensation mechanism of proanthocyanidins in the tea plant (Camellia sinensis)[J]. Scientific Reports, 2015, 5: 8742. doi: 10.1038/srep08742.
[39] Pourcel L, Routaboul J M, Kerhoas L, et al.Transparent testa 10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in arabidopsis seed coat[J]. Plant Cell, 2005, 17(11): 2966-2980.
[40] Kondo K, Kurihara M, Fukuhara K, et al.Conversion of procyanidin B-type (Catechin Dimer) to A-type: evidence for abstraction of C-2 hydrogen in catechin during radical oxidation[J]. Tetrahedron Lett, 2000, 41(4): 485-488.
[41] Jiang X L, Liu Y J, Li W W, et al.Tissue-specific, development-dependent phenolic compounds accumulation profile and gene expression pattern in tea plant [Camellia sinensis][J]. Plos One. 2013, 8(4): e62315. doi: 10.1371/journal.pone.0062315.
[42] 武晓英. 四类茶叶的成分研究[D]. 大连: 辽宁师范大学, 2011.
Wu X Y.Four types of tea composition analysis [D]. Dalian: Liaoning Normal University, 2011.
[43] 吴艳艳. 黄茶、白茶的化学成分研究[D]. 大连: 辽宁师范大学, 2013.
Wu Y Y.The research on the composition of yellow tea and white tea [D]. Dalian: Liaoning Normal University, 2013.
[44] Pokorny O, Lakenbrink C, Engelhardt U H.The synergistic potential of various teas, herbs and therapeutic drugs in health improvement: a review[J]. Acs Symposium, 2003, 871: 254-264.
[45] 许伟, 彭影琦, 张拓, 等. 绿茶加工中主要滋味物质动态变化及其对绿茶品质的影响[J]. 食品科学, 2019, 40(11): 36-41.
Xu W, Peng Y Q, Zhang T, et al.Dynamic change of major taste substances during green tea processing and its impact on green tea quality[J]. Food Science, 2019, 40(11): 36-41.
[46] Yoshihiro K, Shinichi S, Yoshihiro H, et al.Effects of pH and temperature on reaction kinetics of catechins in green tea infusion[J]. Biol Chem, 1993, 57(6): 907-910.
[47] 祁丹丹, 戴伟东, 谭俊峰, 等. 杀青方式对夏季绿茶化学成分及滋味品质的影响[J]. 茶叶科学, 2016, 36(1): 18-26.
Qi D D, Dai W D, Tan J F, et al.Study on the effects of the fixation methods on the chemical components and taste quality of summer green tea[J]. Journal of Tea Science, 2016, 36(1): 18-26.
[48] 梁丽云. 白茶在萎调及贮藏中茶多酚变化的研究[J]. 贵州茶叶, 2017, 45(2): 9-13.
Liang L Y.Research status on the change of tea polyphenols in the wilting and storage of white tea[J]. Journal of Guizhou Tea, 2017, 45(2): 9-13.
[49] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003.
Wan X C.Tea biochemistry [M]. 3rd ed. Beijing: China Agriculture Press, 2003.
[50] 郭雅玲, 赖凌凌, 廖泽明, 等. 乌龙茶加工产业研究进展[J]. 热带作物学报, 2016, 37(1): 208-212.
Guo Y L, Lai L L, Liao Z M, et al.Advances in Oolong tea industry[J]. Chinese Journal of Tropical Crops, 2016, 37(1): 208-212.
[51] Chen L, Chen J, Guo Y, et al.Study on the simultaneous determination of seven benzoylurea pesticides in Oolong tea and their leaching characteristics during infusing process by HPLC-MS/MS[J]. Food Chemistry, 2014, 143: 405-410.
[52] 吴颖, 戴永峰, 张凌云. 做青工艺对乌龙茶品质影响研究进展[J]. 广东茶业, 2013(5): 8-11.
Wu Y, Dai Y F, Zhang L Y.Research progress on the influence of making green technology on the quality of Oolong tea[J]. Guangdong Tea Industry, 2013(5): 8-11.
[53] 闫征, 黄午阳, 於虹, 等. 一种高原花青素含量蓝莓叶乌龙茶的制备方法: 201710870282.4[P].2017-12-15.
Yan Z, Huang W Y, Yu H, et al. A preparation method of blueberry leaf Oolong tea with proanthocyanidins content in plateau: 201710870282.4 [P].2017-12-15.
[54] Al-Nimer M S M, Hameed H G, Yaseen N Y. White and Oolong tea extracts inhibition of fibroblast and cancer cell proliferation unrelated to the proanthocyanidins constituent[J]. Journal of Pharmacology and Toxicology, 2017, 12(3): 142-147.
[55] Wu H L, Huang W J, Chen Z J, et al.GC-MS-based metabolomic study reveals dynamic changes of chemical compositions during black tea processing[J]. Food Research International, 2019, 120: 330-338.
[56] 尹杰, 范仕胜, 宋勤飞, 等. 工夫红茶加工过程中的品质变化[J]. 湖北农业科学, 2013, 52(21): 5279-5282.
Yin J, Fan S S, Song Q F, et al.Changes of quality in Congou black tea during the processing[J]. Hubei Agricultural Sciences, 2013, 52(21): 5279-5282.
[57] 徐玲. 黑茶品质成分及加工研究进展分析[J]. 中国新技术新产品, 2018(23): 80-81.
Xu L.Analysis on the research progress of quality components and processing of black tea[J]. New Technology & New Products of China, 2018(23): 80-81.
[58] 李春美, 谢笔钧. 儿茶素氧化聚合产物药理作用研究概况[J]. 茶叶, 2001(1): 28-29, 32-34.
Li C M, Xie B Y. A review of research on pharmacodynamics of catechins oxidation polymers [J]. Journal of Tea, 2001(1): 28-29, 32-34.
[59] 毕玲. 葡萄籽原花青素提取物预防龋病的实验研究[D]. 杭州: 浙江大学, 2008.
Bi L.Inhibitory effect of grape seed proanthocyanidin extract on growth, acid production of streptococcus mutans and ceries incidence of rats [D]. Hangzhou: Zhejiang University, 2008.
[60] 森口盛雄, 福井祐子, 汭田满广. 含原花色素茶饮料: 200780018106.2[P].2009-06-03.
Moriguchi M, Fukui Y, Da M. Tea beverage with Proanthocyanidins: 200780018106.2 [P].2009-06-03.
[61] 保田, 谢笔钧, 瞿兆辉, 等. 原花青素茶及其制作方法: 2001106645.8[P].2001-11-28.
Bao T, Xie B Y, Zhai Z H, et al. Procyanidin tea and its production method: 2001106645.8 [P].2001-11-28.
[62] 张玉森, 董瑞瑞, 杨倩, 等. 茶多酚联合原花青素改善AD大鼠记忆作用及机制[J]. 中国公共卫生, 2019, 35(3): 304-308.
Zhang Y S, Dong R R, Yang Q, et al.Effect and mechanism of tea polyphenols combined with proanthocyanidins on memory improvement in AD model rats[J]. Chinese Journal of Public Health, 2019, 35(3): 304-308.
[63] 左晟希. 原花青素和茶多酚对AA肉鸡生长性能、肌肉品质及血液生化指标的影响[D]. 南昌: 江西农业大学, 2017.
Zuo S X.Effect of Pu-sheng-yuan on growth performance and quality of muscle and blood biochemical index of AA broilers [D]. Nanchang: Jiangxi Agricultural University, 2017.
[64] Telma B L B, Denise P S, Daniel G. Green tea polyphenol epigallocatechin-3-gallate and cranberry proanthocyanidins act in synergy with cathelicidin (LL-37) to reduce the LPS-induced inflammatory response in a three-dimensional co-culture model of gingival epithelial cells and fibroblasts[J]. Archives of Oral Biology, 2015, 60(6): 845-853.
[65] 徐歆, 吴正奇, 陈小强, 等. 紫化茶的化学成分及功能活性研究进展[J]. 食品工业科技, 2017, 38(21): 302-306.
Xu X, Wu Z Q, Chen X Q, et al.Research progress of chemical constituents and functional activity in purple tea[J]. Science and Technology of Food Industry, 2017, 38(21): 302-306.
[66] Zhai Y G, Yu K D, Cai S L, et al.Targeted mutagenesis of BnTT8 homologs controls yellow seed coat development for effective oil production in Brassica napus L.[J]. Plant Biotechnology Journal, 2020, 18(5): 1153-1168.
[67] 于攀. 原花青素对紫外线诱导晶状体上皮细胞氧化损伤保护作用的研究[J]. 国际眼科杂志, 2010(8): 1477-1480.
Yu P.Study on protection of procyanidins against UV-induced oxidative damage of lens epithelial cells[J]. International Journal of Ophthalmology, 2010(8): 1477-1480.
[68] 高羽, 董志. 原花青素的药理学研究现状[J]. 中国中药杂志, 2009, 34(6): 651-655.
Gao Y, Dong Z.Progress on study of pharmacological effects of procyanidins[J]. China Journal of Chinese Materia Medica, 2009, 34(6): 651-655.
[69] 李瑞丽. 葡萄籽中原花青素的提取工艺研究[D]. 北京: 北京化工大学, 2006.
Li R L.Extraction technology study of grape seeds procyanidins [D]. Beijing: Beijing University of Chemical Technology, 2006.
[70] 李绮丽, 彭芳刚, 刘德明, 等. 红莲外皮原花青素的纯化与分析[J]. 食品科学, 2014, 35(3): 106-110.
Li Q L, Peng F G, Liu D M, et al.Purification and analysis of proanthocyanidins from red peel of lotus seeds[J]. Food Science, 2014, 35(3): 106-110.
[71] 天津市市场监督管理委员会. 植物提取物中原花青素的测定紫外/可见分光光度法: DB12/T 885—2019[S]. 天津: 2019.
Tianjin Administration for Market Regulation. Determination of polysaccharide in Lily Bulbus-UV/VIS spectrophotometry: DB12/T 885—2019[S]. Tianjin: 2019.
[72] 新疆维吾尔自治区质量技术监督局. 黑果枸杞原花青素含量的测定液相谱法: DB65/T 4039—2017[S]. 新疆: 2017.
Xinjiang Uygur Autonomous Region Quality and Technical Supervision Bureau. Determination of procyanidins in lycium barbarum by HPLC: DB65/T 4039—2017[S]. Xinjiang: 2017.
[73] 中国医药保健品进出口商会. 植物提取物葡萄籽提取物(葡萄籽低聚原花青素): T/CCCMHPIE 1.19—2016[S].中国: 2016.
China Chamber of Commerce for Import and Export of Medicines and Health Products. Plant extract: grape seed extract (Grape seeds oligomeric proanthocyanidins): T/CCCMHPIE 1.19—2016[S]. China: 2016.
[74] 蒋晓岚. 茶树原花青素的积累形态及缩合反应的研究[D]. 合肥: 安徽农业大学, 2015.
Jiang X L.Accumulation profile and condensation mechanism of proanthocyanidins in the tea plant [Camellia sinensis (L.) O. Kuntze] [D]. Hefei: Anhui Agricultural University, 2015.
文章导航

/