欢迎访问《茶叶科学》,今天是
研究报告

干旱胁迫对茶树幼苗生长及叶绿素荧光特性的影响

  • 王铭涵 ,
  • 丁玎 ,
  • 张晨禹 ,
  • 高羲之 ,
  • 陈建姣 ,
  • 唐瀚 ,
  • 沈程文
展开
  • 1.湖南农业大学茶学教育部重点实验室,湖南 长沙 410128;
    2.湖南农业大学国家植物功能成分利用工程技术研究中心,湖南 长沙 410128;
    3.湖南农业大学园艺学院,湖南 长沙 410128;
    4.邵阳市农业科学研究院,湖南 邵阳 422001
王铭涵,女,硕士研究生,主要从事茶树生物技术与种质创新研究,578117245@qq.com。

收稿日期: 2019-10-24

  修回日期: 2019-12-25

  网络出版日期: 2020-08-18

基金资助

国家自然科学基金项目(31271789)、中央引导地方科技发展专项(2019XF5041)、湖南省重点研发计划(2017NK2193)、湖南省现代农业产业技术体系建设专项(湘财农指[2019]0047号)

Effects of Drought Stress on Growth and Chlorophyll Fluorescence Characteristics of Tea Seedlings

  • WANG Minghan ,
  • DING Ding ,
  • ZHANG Chenyu ,
  • GAO Xizhi ,
  • CHEN Jianjiao ,
  • TANG Han ,
  • SHEN Chengwen
Expand
  • 1. Lab of Tea Science of China Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
    2. National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China;
    3. College of Horticulture, Hunan Agricultural University, Changsha 410128, China;
    4. Shaoyang Agricultural Science Research Institute, Shaoyang 422001, China

Received date: 2019-10-24

  Revised date: 2019-12-25

  Online published: 2020-08-18

摘要

在全球变暖的气候背景下,干旱已成为限制作物生产发展的重要因素,但目前关于干旱胁迫下不同茶树的生理生化响应研究相对较少。以黄金茶1号(HJC-1)、壶瓶山8号(HPS-8)和壶瓶山15号(HPS-15)等10个茶树品种(系)的一年生幼苗为材料进行盆栽控水试验,对持续性干旱胁迫处理下茶树幼苗的表型、叶片结构、叶绿素含量、叶绿素荧光参数和可溶性糖含量进行研究。结果表明,干旱胁迫使其叶长、叶宽缩短,叶片数减少,侧根数增多,植株矮化;叶片厚度、上表皮厚度、栅栏组织厚度、海绵组织厚度、下表皮厚度、栅栏组织与海绵组织比值均呈现下降趋势。叶绿素a、叶绿素b和总叶绿素含量与对照组相比均有所增加,且叶绿素a含量存在极显著性差异(P<0.000 1)。10个茶树品种(系)在干旱胁迫下均受到光抑制,与对照组相比,Fo、Fv/FmFv/Fo值减少,而Fm值增大。叶片可溶性糖含量在干旱胁迫下与正常水分环境相比有所增加,除湘农1号(XN-1)外,其他品种(系)的增加量均有显著性差异。通过耐旱性隶属函数值法比较得出,茶树HPS-8、湘农18号(XN-18)、湘农9803号(XN-9803)、湘农9810号(XN-9810)和湘农9809号(XN-9809)的抗旱能力较弱,HJC-1、HPS-15、XN-1、湘农9802号(XN-9802)和壶瓶山20号(HPS-20)的抗旱能力相对较强。

本文引用格式

王铭涵 , 丁玎 , 张晨禹 , 高羲之 , 陈建姣 , 唐瀚 , 沈程文 . 干旱胁迫对茶树幼苗生长及叶绿素荧光特性的影响[J]. 茶叶科学, 2020 , 40(4) : 478 -491 . DOI: 10.13305/j.cnki.jts.2020.04.004

Abstract

In the context of global warming, drought has become an important factor restricting the development of crop production, but there were relatively few studies on the physiological and biochemical responses of different tea cultivars to drought stress. Here, a pot water control experiment was conducted using annual tea seedlings of 10 tea cultivars (strains) such as Huangjincha 1 (HJC-1), HPS-8, and HPS-15 as materials. The chlorophyll content, chlorophyll fluorescence parameters and soluble sugar content were studied. The results show that: drought stress shortened the leaf length and width, reduced the number of leaves, increased the number of lateral roots, and dwarfed the plant. Furthermore, leaf thickness, upper epidermal thickness, fence tissue thickness, sponge tissue thickness, lower epidermal thickness and ratio of fence tissue to sponge tissue also decreased under stress. Chlorophyll a, chlorophyll b, and total chlorophyll contents increased compared to the control group, and the increase of chlorophyll a content was significant. Photoinhibition was observed in all tea cultivars (strains) under drought stress. The values of Fo, Fv/Fm and Fv/Fo of tea cultivars under stress were lower than the control group, but the Fm values showed an opposite trend. The soluble sugar content of leaves significantly increased under drought stress compared with the control, except tea cultivar XN-1. Further analysis shows that HPS-8, XN-18, XN-9803, XN-9810 and XN-9809 have low drought tolerance but HJC-1, HPS-15, XN-1, XN-9802 and HPS-20 have relatively strong drought tolerance.

参考文献

[1] 刘彦, 汪志威, 张冬莲, 等. 茶树抗旱研究进展[J]. 江西农业, 2018(14): 56-57.
Liu Y, Wang Z W, Zhang D L, et al.Research progress on tea tree drought resistance[J]. Jiangxi Agriculture, 2018(14): 56-57.
[2] 陈一万. 茶叶生产气象要素分析及气象灾害预防策略[J]. 科学技术创新, 2018(30): 57-58.
Chen Y W.Analysis of meteorological elements in tea production and meteorological disaster prevention strategies[J]. Scientific and technological innovation, 2018(30): 57-58.
[3] Cheruiyot E K, Mumera L M, Ng'Etich W K, et al. High fertilizer rates increase susceptibility of tea to water stress[J]. Journal of Plant Nutrition, 2009, 33(1): 115-129.
[4] 朱俊欣. 高温干旱对贵州省茶叶产量的影响[J]. 现代农业科技, 2019(8): 42-43.
Zhu J X.Effect of high temperature and drought on tea yield in Guizhou Province[J]. Modern Agricultural Science and Technology, 2019(8): 42-43.
[5] 翟秀明, 唐敏, 胡方洁, 等. 高温干旱胁迫对茶树叶绿素荧光特性的影响[J]. 南方农业, 2019, 13(4): 46-49, 59.
Zhai X M, Tang M, Hu F J, et al.Effects of high temperature and drought stress on chlorophyll fluorescence characteristics of tea tree[J]. South China Agriculture, 2019, 13(4): 46-49, 59.
[6] 姜燕敏, 马军辉, 李汉美, 等. 丽水市2013年7—8月高温热害对茶叶生产的影响[J]. 中国农学通报, 2014, 30(16): 158-163.
Jiang Y M, Ma J H, Li H M, et al.The effect of high temperature damage on tea production during July-August 2013 in Lishui[J]. Chinese Agricultural Science Bulletin, 2014, 30(16): 158-163.
[7] Lin S K,Lin J,Liu Q L,et al.Time-course of photosynthesis and non-structural carbon compounds in the leaves of tea plants (Camellia sinensis L.)in response to deficit irrigation[J]. Agricultural Water Management, 2014, 144: 98-106.
[8] 潘根生, 骆耀平, 钱利生. 茶树对水分的生理响应[J]. 茶叶, 1999(4): 197-201.
Pan G S, Luo Y P, Qian L S.Physiological responses of tea(Camellia Sinensis) to different soil moisture regimes[J]. Journal of Tea, 1999(4): 197-201.
[9] Yuan X K, Yang Z Q, Li Y X, et al.Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato[J]. Photosynthetica, 2016, 54(1): 28-39.
[10] 陈昕, 徐宜凤, 张振英. 干旱胁迫下石灰花楸幼苗叶片的解剖结构和光合生理响应[J]. 西北植物学报, 2012, 32(1): 111-116.
Chen X, Xu Y F, Zhang Z Y.Leaf anatomical structure and photosynthetic physiological responses of Sorbus folgneri seedlings under drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(1): 111-116.
[11] 王学奎. 植物生理生化实验原理和技术[M]. 2版. 北京: 高等教育出版社, 1999.
Wang X K.Principles and techniques of plant physiology and biochemistry experiment [M]. 2nd ed. Beijing: Higher Education Press, 1999.
[12] 冯晓敏, 张永清. 水分胁迫对糜子植株苗期生长和光合特性的影响[J]. 作物学报, 2012, 38(8): 1513-1521.
Feng X M, Zhang Y Q.Effect of water stress on seedling growth and photosynthetic characteristics in broomcorn millet[J]. Acta Agron Sin, 2012, 38(8): 1513-1521.
[13] 吴晓凤, 倪沛, 杨涛, 等. 10种菊科植物的抗旱性与抗盐性评价[J]. 生态学杂志, 2018, 37(7): 1959-1968.
Wu X F, Ni P, Yang T, et al.Evaluation of drought and salt resistance of 10 species from Asteraceae[J]. Chinese Journal of Ecology, 2018, 37(7): 1959-1968.
[14] 吴会会, 邹英宁, 吴强盛. 干旱胁迫下AMF对盆栽枳实生苗生长和活性氧代谢的影响[J]. 中国南方果树, 2018, 47(2): 36-38, 45.
Wu H H, Zou Y N, Wu Q S.Effects of Arbuscular Mycorrhizal fungi on growth and reactive oxygen metabolism of trifoliate orange under drought stress[J]. South China Fruits, 2018, 47(2): 36-38, 45.
[15] 史刚荣, 程雪莲, 刘蕾, 等. 扁担木叶片和次生木质部解剖和水分生理特征的可塑性[J]. 应用生态学报, 2006, 17(10): 1801-1806.
Shi G R, Cheng X L, Liu L, et al.Anatomical and water physiological plasticity of Grewia biloba var. parviflora leaf and secondary xylem[J]. Chinese Journal of Applied Ecology, 2006, 17(10): 1801-1806.
[16] Manoj K, Schneider B, Raveh E, Noemi T Z.Leaf anatomical characteristics and physiological responses to short-term drought in Ziziphus mauritiana (Lamk.)[J]. Scientia Horticulturae, 2010, 124(3): 316-322.
[17] Chartzoulakis K, Patakas A, Kofidis G, et al.Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivers[J]. Scientia Horticulturae, 2002, 95(1): 39-50.
[18] 杨菲, 李蓓蓓, 何辰宇. 高温干旱对茶树生长和品质影响机理的研究进展[J]. 江苏农业科学, 2017, 45(3): 10-13, 40.
Yang F, Li B B, He C Y.Research progress on the effects of high temperature and drought on tea tree growth and quality[J]. Jiangsu Agricultural Science, 2017, 45(3): 10-13, 40.
[19] Peterson R B, Sivak M N, Walker D A.Relationship between steady-state fluorescence yield and photosynthetic efficiency in spinach leaf tissue[J]. Plant Physiology, 1988, 88(1): 158-163.
[20] 许大全, 张玉忠, 张荣铣, 等. 植物光合作用的光抑制[J]. 植物生理学通讯, 1992, 28(4): 237-243.
Xu D Q, Zhang Y Z, Zhang R X, et al.Photoinhibition of photosynthesis in plants[J]. Plant Physiology Communications, 1992, 28(4): 237-243.
[21] 马雪梅, 吴朝峰. 干旱胁迫对金银花叶片叶绿素含量及荧光特性的影响[J]. 江苏农业科学, 2018, 46(17): 133-136.
Ma X M, Wu Z F.Influences of drought stress on chlorophyll content and fluorescence characteristics of honeysuckle leave[J]. Jiangsu Agricultural Science, 2018, 46(17): 133-136.
[22] 张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报, 1999, 16(4): 444-448.
Zhang S R.Significance and discussion of chlorophyll fluorescence kinetic parameters[J]. Botanical Bulletin, 1999, 16(4): 444-448.
[23] 卢从明, 张其德, 匡延云. 水分胁迫对小麦叶绿体激发能分配和光系统Ⅱ原初光能转换效率的影响[J]. 植物物理学报, 1995, 11(1): 82-86.
Lu C M, Zhang Q D, Kuang Y Y.The effects of water stress on distribution of excitation energy and efficiency of primary conversion of light energy of photosystem Ⅱ in wheat chloroplasts[J]. Journal of Plant Physics, 1995, 11(1): 82-86.
[24] 赵丽英, 邓西平, 山仑. 不同水分处理下冬小麦旗叶叶绿素荧光参数的变化研究[J]. 中国生态农业学报, 2007, 15(1): 63-66.
Zhao L Y, Deng X P, Shan L.Effects of altered water condition on some chlorophyll fluorescence parameters of flag leaves of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2007, 15(1): 63-66.
[25] Papageorgiou G C, Govindjee. ChloRophyll a fluorescence: a signature of photosynthesis[M]. Berlin: Springer Science & Business Media, 2007.
[26] 刘旭, 罗桂杰. 干旱胁迫对麻栎幼苗生长及生理生化特性的影响[J]. 北方农业学报, 2019, 47(2): 11-14.
Liu X, Luo G J.Effects of water stress on growth and physiological characteristics in Quercus acutissima[J]. Journal of Northern Agriculture, 2019, 47(2): 11-14.
[27] 钱瑭璜, 雷江丽, 庄雪影. 华南地区8种常见园林地被植物抗旱性比较研究[J]. 西北植物学报, 2012, 32(4): 759-766.
Qian T H, Lei J L, Zhuang X Y.Comparative research on drought resistance of 8 common garden ground cover plants in South China[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(4): 759-766.
[28] 肖涵, 张鸿翎, 韩涛, 等. 干旱胁迫对3种宿根花卉生理生化指标的影响[J]. 西北林学院学报, 2019, 34(5): 102-107.
Xiao H, Zhang H L, Han T, et al.Effects of drought stress on physiological and biochemical indices of three species perennial flowers[J]. Journal of Northwest Forestry University, 2019, 34(5): 102-107.
[29] 单长卷, 韩蕊莲, 梁宗锁. 干旱胁迫下黄土高原4种乡土禾草抗氧化特性[J]. 生态学报, 2012, 32(4): 1174-1184.
Shan C J, Han R L, Liang Z S, Antioxidant properties of four native grasses in Loess Plateau under drought stress[J]. Acta Ecologica Sinica, 2012, 32(4): 1174-1184.
[30] 刘声传, 陈亮. 茶树耐旱机理及抗旱节水研究进展[J]. 茶叶科学, 2014, 34(2): 111-121.
Liu S C, Chen L.Research advances on the drought-resistance mechanism and strategy of tea plant[J]. Journal of Tea Science, 2014, 34(2): 111-121.
[31] 周媛, 方林川, 童俊, 等. 干旱胁迫对杜鹃叶片表皮解剖结构的影响[J]. 湖北农业科学, 2018, 57(14): 67-72.
Zhou Y, Fang L C, Tong J, et al.Effect of drought stress on leaf epidermal anatomical structure of Rhododendron [J]. Hubei Agricultural Sciences, 2018, 57(14): 67-72.
[32] 金研铭, 李良希. 雪柳、连翘和小叶丁香叶片解剖结构及其抗旱关系的比较研究[J]. 东北农业大学学报, 2012, 43(1): 116-120.
Jin Y M, Li L X.Comparative study on relationship between leaf anatomical structure and drought resistance of Fontanesia fortunei Carr., Forsythia suspense Vahl., and Syringa microphylla Diels.[J]. Journal of Northeast Agricultural University, 2012, 43(1): 116-120.
[33] 赵翠仙, 黄子琛. 腾格里沙漠主要旱生植物旱性结构的初步研究[J]. 植物学报, 1981, 23(4): 278-283, 347-348.
Zhao C X, Huang Z C. A Preliminary study of xeromorphism of some important xerophytes growing in Tungeli Desert [J]. Journal of Integrative Plant Biology, 1981, 23(4): 278-285, 347-348.
[34] 孙小玲, 许岳飞, 马鲁沂, 等. 植株叶片的光合色素构成对遮阴的响应[J]. 植物生态学报, 2010, 34(8): 989-999.
Sun X L, Xu Y F, Ma L Y, et al.A review of acclimation of photosynthetic pigment composition in plant leaves to shade environment[J]. Chinese Journal of Plant Ecology, 2010, 34(8): 989-999.
[35] 刘济明, 李佳, 文爱华, 等. 米槁幼苗光合色素与光合特征对干旱胁迫的响应[J]. 江苏农业科学, 2019,47(9): 171-174.
Liu J M, Li J, Wen A H, et al.Responses of photosynthetic pigment and photosynthetic characteristics of Cinnamomum migao to drought stress[J]. Jiangsu Agricultural Science, 2019, 47(9): 171-174.
[36] 魏鹏. 茶树抗旱性部分生理生化指标的研究[D]. 重庆: 西南农业大学, 2003.
Wei P.Study on some physiological and biochemical indexes of tea tree drought resistance [D]. Chongqing: Southwest Agricultural University, 2003.
[37] 刘玉英, 易红华, 徐泽. 干旱胁迫对不同茶树品种叶绿素含量的影响[J]. 南方农业, 2007(1): 68-70.
Liu Y Y, Yi H H, Xu Z.Effects of drought stress on chlorophyll content of different tea plant varieties[J]. Southern Agriculture, 2007(1): 68-70.
[38] 区智, 邹旭, 周长梅, 等. PEG-6000模拟干旱胁迫对灯台树幼苗生理特性的影响[J]. 西南农业学报, 2018, 31(6): 1180-1184.
Qu Z, Zou X, Zhou C M, et al.Effect of PEG-6000 simulation drought stress on physiological characteristics of Alstonia scholaris seedlings[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(6): 1180-1184.
[39] 沈思言, 徐艳霞, 马春雷, 等. 干旱处理对不同品种茶树生理特性影响及抗旱性综合评价[J]. 茶叶科学, 2019, 39(2): 171-180.
Shen S Y, Xu Y X, Ma C L, et al.Effects of physiological characteristics of different tea cultivars under drought treatment and evaluation on their drought resistance[J]. Journal of Tea Science, 2019, 39(2): 171-180.
[40] 冯慧芳, 薛立, 任向荣, 等. 4种阔叶幼苗对PEG模拟干旱的生理响应[J]. 生态学报, 2011, 31(2) : 371-382.
Feng H F, Xue L, Ren X R, et al.Physiological responses of four broadleaved seedlings to drought stress simulated by PEG[J]. Acta Ecologica Sinica, 2011, 31(2) : 371-382.
[41] Banks J M.Chlorophyll fluorescence as a tool to identify drought stress in acer genotypes[J]. Environmental and Experimental Botany, 2018, 155: 118-127.
[42] Nultsch W, Pfau J, Huppertz K.Photoinhibition of photosynthetic oxygen production and its recovery in the subtidal red alga Polyneura hilliae[J]. Botanica Acta, 1990, 103: 62-67.
[43] 陈雪妮, 李建挥, 吴毅, 等. 水分胁迫对2个蓝莓品种叶绿素荧光特性的影响[J]. 中南林业科技大学学报, 2019, 39(8): 109-114, 138.
Chen X N, Li J H, Wu Y, et al.Effects of soil water stress on chlorophyll fluorescence characteristic of two blueberry varieties[J]. Journal of Central South University of Forestry and Technology, 2019, 39(8): 109-114, 138.
[44] Dias M C, Correia S, Serodio J, et al.Chlorophyll fluorescence and oxidative stress endpoints to discriminate olive cultivars tolerance to drought and heat episodes[J]. Scientia Horticulturae, 2018, 231: 31-35.
[45] 解斌, 李俊豪, 赵军, 等. 干旱胁迫对2种梨砧木生长及叶绿素荧光特性的影响[J]. 西北农业学报, 2019, 28(5): 753-761.
Xie B, Li J H, Zhao J, et al.Effect of drought stress on growth characteristics and chlorophyll fluorescence of pear rootstocks[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(5): 753-761.
[46] 李广敏, 关军锋. 作物抗旱生理与节水技术研究[M]. 北京: 气象出版社, 2001.
Li G M, Guan J F.Study on crop drought resistance physiology and water saving technology [M]. Beijing: Meteorological Press, 2001.
文章导航

/