欢迎访问《茶叶科学》,今天是
研究报告

伐地那非增加EGCG-β-乳球蛋白纳米粒对肝癌细胞的抑制作用

  • 陈春晓 ,
  • 楼文雨 ,
  • 丁镇建 ,
  • 李卓烨 ,
  • 杨媛媛 ,
  • 金鹏 ,
  • 杜琪珍
展开
  • 浙江农林大学农业与食品科学学院,浙江 杭州 311300
陈春晓,女,硕士研究生,主要从事天然活性物质方面的研究。

收稿日期: 2019-10-09

  修回日期: 2020-04-11

  网络出版日期: 2020-08-18

基金资助

浙江省重点研发(2019C02072)、浙江农林大学大学生创新(113-2013200135、115-2013200021)

Vardenafil Improves the Proliferative Inhibition of EGCG-β-lactoglobulin Nanoparticles Against Liver Cancer Cells

  • CHEN Chunxiao ,
  • LOU Wenyu ,
  • DING Zhenjian ,
  • LI Zhuoye ,
  • YANG Yuanyuan ,
  • JIN Peng ,
  • DU Qizhen
Expand
  • School of Agricultural and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China

Received date: 2019-10-09

  Revised date: 2020-04-11

  Online published: 2020-08-18

摘要

较高浓度的EGCG才能抑制癌细胞的增殖,通过纳米化和EGCG与其他药物的联合使用是提高EGCG生物活性的重要策略。本研究将EGCG和伐地那非(VD)同时包埋于β-乳球蛋白(β-Lg)纳米载体中,制备出EGCG-VD-β-Lg纳米粒(EVβ-NPs),体外试验证实,EVβ-NPs能提高人肝癌细胞(HepG2细胞)中Caspase-3活性,使HepG2细胞在S期产生明显的阻滞,诱发细胞核分裂,从而导致HepG2细胞凋亡。研究结果表明,将EGCG与微量的VD联合使用,并通过纳米化包埋可以显著提高EGCG的抗癌活性。这一方法在EGCG抗癌制品的开发方面具有潜在的价值。

本文引用格式

陈春晓 , 楼文雨 , 丁镇建 , 李卓烨 , 杨媛媛 , 金鹏 , 杜琪珍 . 伐地那非增加EGCG-β-乳球蛋白纳米粒对肝癌细胞的抑制作用[J]. 茶叶科学, 2020 , 40(4) : 528 -535 . DOI: 10.13305/j.cnki.jts.2020.04.009

Abstract

The combination of nano and other drugs is an important strategy to improve the biological activity of EGCG, since a high EGCG concentration is essential for the inhibition of the proliferation of cancer cells. In this study, EGCG-vardenafil (VD)-β-lactoglobulin (β-Lg)-nanoparticles (EVβ-NPs) was prepared by encapsulating EGCG and VD in β-Lg nano-carriers. In vitro experimental results show that EVβ-NPs could upgrade the activity of caspase-3 in HepG2 cells compared to the native EGCG, which caused cell cycle arrest in the S phase of HepG2 cells to induce cell nuclear division, and finally lead to HepG2 cell apoptosis. The results demonstrate that the encapsulation of EGCG-VD can significantly improve the anticancer activity of EGCG, and possesses potential value in the development of EGCG anticancer products.

参考文献

[1] 刘超, 陈若芸. 儿茶素及其类似物的化学和生物活性研究进展[J]. 中国中药杂志, 2004, 29(10): 1017-1021.
Liu C, Chen R Y.Advance of chemistry and bioactivities of catechin and its analogues[J]. China Journal of Chinese Materia Medica, 2004, 29(10): 1017-1021.
[2] Ponniah K, Loo T S, Edwards P J, et al.The production of soluble and correctly folded recombinant bovine β-lactoglobulin variants A and B in Escherichia coli for NMR studies[J]. Protein Expr Purifi, 2010, 70(2): 283-289.
[3] Liang L, Tajmir-Riahi H A, Subirade M. Interaction of β-lactoglobulin with resveratrol and its biological implications[J]. Biomacromolecules, 2008, 9: 50-56.
[4] Sneharani A H, Karakkat J V, Singly S A.Interaction of curcumin with β-lactoglobulin stability, spectroscopic analysis, and molecular modeling of the complex[J]. Journal of Agricultural and Food Chemistry, 2010, 58: 11130-11139.
[5] Zimet P, Livney Y D.Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ω-3 polyunsaturated fatty acids[J]. Food Hydrocoll, 2009, 23: 1120-1126.
[6] Kumazoe M, Sugihara K, Tsukamoto S, et al.67-kDa laminin receptor increases cGMP to induce cancer-selective apoptosis[J]. J Clin Invest, 2013, 123(2): 787-99.
[7] 黄美蓉, 应浩, 江用文, 等. EGCG纳米粒的制备及其抗肿瘤活性研究[J]. 茶叶科学, 2015, 35(6): 605-612.
Huang M R, Ying H, Jiang Y W, et al.Research on preparation and antitumor activity of EGCG naonparticles[J]. Journal of Tea Science, 2015, 35(6): 605-612.
[8] Shpigelman A, Israeli G, Livney Y D.Thermally-induced protein-polyphenol co-assemblies: beta lactoglobulin-based nanocomplexes as protective nanovehicles for EGCG[J]. Food Hydrocoll, 2010, 24(8): 735-743.
[9] Li B, Du W, Jin J, et al.Preservation of (-)-epigallocatechin-3-gallate antioxidant properties loaded in heat treated β-lactoglobulin nanoparticles[J]. J Agriculture Food Chemistry, 2012, 60: 3477-3484.
[10] 成惠林. 检测细胞活性的MTT方法[J]. 江苏医药, 1996, 22(5): 330-331.
Cheng H L.MTT method for the detection of cell activity[J]. Jinagsu Med J, 1996, 22(5): 330-331.
[11] 周建军, 乐秀芳, 韩家娴, 等. 影响MTT方法测定结果的一些因素[J]. 肿瘤, 1994, 14(2): 93-94.
Zhou J J, Le X F, Han J X, et al.The factors influencing the results of MTT[J]. Tumor, 1994, 14(2): 93-94.
[12] Mu?ller R H, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy rationale for development and what we can expect for the future[J]. Adv Drug Delivery Rev, 2001(47): 3-19.
[13] Timasheff S N, Townend R.Molecular interactions in β-lactoglobulin. I. The association of the genetic species of β-lactoglobulin below the isoelectric point[J]. J Am Chem Soc, 1961, 83(2): 464-469.
[14] Chithrani B D, Ghazani A A, Chan W C W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells[J]. Nano Lett, 2006, 6: 662-668.
[15] Yang C S, Wang X, Lu G, et al.Cancer prevention by tea: animal studies, molecular mechanisms and human relevance[J]. Nat Rev Cancer 2009, 9: 429-439.
[16] Wu M, Jin J, Jin P, et al.Epigallocatechin gallate-β-lactoglobulin nanoparticles improve the antitumor activity of EGCG for inducing cancer cell apoptosis[J]. J Funct Food, 2017, 39: 257-263.
[17] Fan Y, Zhang Y, Yokoyama W, et al.β-Lactoglobulin-chlorogenic acid conjugate-based nanoparticles for delivery of (-)-epigallocatechin-3-gallate[J]. RSC Adv, 2017, 7(35): 21366-21374.
[18] Yang Y, Jin P, Zhang X, et al.New epigallocatechin gallate (EGCG) nanocomplexes co-assembled with 3-mercapto-1-Hexanol and β-lactoglobulin for improvement of antitumor activity[J]. J Biomedi Nanotechnol, 2017, 13(7): 805-814.
[19] Zhang L, Sahu I D, Xu M, et al.Effect of metal ions on the binding reaction of (-)-epigallocatechin gallate to β-lactoglobulin[J]. Food Chemistry, 2017, 221: 1923-1929.
[20] Corbin J D, Beasley A, Blount M A, et al.Vardenafil: structural basis for higher potency over sildenafil in inhibiting cGMP specific phosphodiesterase-5 (PDE5)[J]. Neurochem Int, 2004, 45: 859-863.
[21] Li Q, Shu Y.Pharmacological modulation of cytotoxicity and cellular uptake of anti-cancer drugs by PDE5 Inhibitors in lung cancer cells[J]. Pharma Res, 2014, 31: 86-96.
文章导航

/